New Features in AxiomPlus Drive Firmware and Configuration Program.

Version 1.04d(IP)

September 17, 2002

This document is to provide a brief overview of the use of new functions added to Axiom+ PV-series products via new firmware and software through version 1.04d. Version 1.04d software / firmware is being worked on internally in support of weld-gun project and also in pursuit of future standard release.

The information herein should serve as a useful introduction to main areas of new functionality of Axiom+ PV-series programmable indexers, and provide a first step towards a corresponding future user manual revision. Refer to document “Ax+rev.doc” for a listing of all changes and bug fixes to Axiom+ code sorted by revision level.

New Features Added:

· More Registers added along with the Ability to Use them as a Source of Data in more Instructions

· Ability added to Read and Write Register Values via ASCII serial port commands

· Assign Value to Register Instruction Added for Sequential Programming

· Save Position to Register Sequential Instruction now Supports All Position Registers

· Maximum Torque Limit Parameter Change Instruction now Supports Torque Registers as Source

· Software defined Motion Limits added – also Parameter Change Instruction for Run-Time Change of SW Travel Limits

· Branch on Position Compare Sequential Program Instruction added

· The change In-Position Band value can now be entered as user units value (i.e inches, meters, etc)

· Various PLC flags and I/O can now be read and written via serial port ASCII commands

· PLC Register Compare Input Logic Operation added

· New PLC Indexer Status Flag Added to Signal Torque (Current) at Peak Limit

· Project Save and Load, Upload and Download

· Printing the Sequential Program lists the registers and their comments.

· Automatic Prompting for Serial Port Selection and Opening

Register Value Usage
In many sequential program instruction dialog boxes that have an entry field for a position, velocity or torque value, the user has the option to use a value stored in register. Any place where you can use a register value there will be a ‘R’ button to the right of the text box, like the example below.

[image: image1.png]&

Clicking on the ‘R’ button will bring up the register selection dialog box. There are presently three types of registers, position, velocity, and torque-limit. The dialog box is type sensitive, in that it will only allow the user to select the type of register that applies to the particular data field. That is, you can only select a position register for a position field, a velocity register for a velocity field and a torque register for a torque field.

Below is the updated register selection dialog box.

[image: image2.png]Register Display / Selection /7 Comment

Select Register Class Select Individual Register

READ / WRITE ACCESS REGISTERS ID# [[COMMENT

Position Registers, RAM

Position Registers, llon-Volatile
Velocity Registers, RAM
Velocity Registers. llon-Volatle
Torque Limit Registers. RAM

Torque Limit Registers, lion-Volatile
Click on ‘COMMENT' Command Button to Edit Operand Comment

Regarding physical storage, there are two kinds of registers, RAM and Non-Volatile. RAM registers reside in RAM memory and do not have a value until one is assigned and if the drive should power down or reset, the value is lost (reset to zero upon power-up). Non-Volatile registers have their value stored to EEPROM and will preserve their value when the drive is powered down or reset.

The Types of Registers Available and how many:

Registers
Number Available
Valid Values

Position Registers, RAM
32
+/-(2^30)-1 encoder counts equivalent for Absolute usage +/-(2^31)-1 encoder counts equivalent for Incremental usage

Position Registers, Non-Volatile
32

Velocity Registers, RAM
16
+/- 10,239,999 encoder counts per second equivalent

Velocity registers invoked for Absolute or Incremental moves cannot hold negative values.

Velocity Registers, Non-Volatile
16

Torque Registers, RAM
32
Software entered range – 0% to 100% corresponds to register value range of 0 to 32767 decimal

Torque Registers, Non-Volatile
32

*Note: When values are assigned to registers via software, they are entered with respect to user unit definitions and software performs range checking. Torque registers are entered via software as a percentage of configured peak torque.

Register values are assigned their value in one of two ways. There are two sequential program instructions that assign a value to a register. Registers can be assigned values by an ASCII command received via the serial port. These commands are described later in this document. Position registers actually store their values as a 32-bit signed integer representing encoder counts. Velocity registers store a 32-bit signed integer representing encoder counts / second. Torque registers store an integer value between 0 and 32767 decimal (Q15 format), with 32767 corresponding to 100% torque.

Instructions With The Option To Use A Register Value

Absolute Position Move

Incremental Position Move

Velocity Move

The Move instruction Motion Triggers

Branch On Position Compare

Maximum Torque Limit

Software Travel Limits

And the Register Compare PLC contact.

Read / Write Register Value Using ASCII Commands Over RS232 Serial Port

Registers can be manipulated via ASCII serial port commands. It should be noted that communication settings should be 19200 baud, 8 data bits, 1 stop bit, odd parity. Following is a listing of command syntax:

Serial Command Syntax:

Note: All numerical data is transmitted and received in Ascii-coded hex format. All data is transmitted most-significant byte / word first.

Position Ram Registers

Read: UR81XXXX

XXXX is register id (1-32), Ascii-coded hex

Returns: A 32-bit signed integer register value is returned as Ascii-coded hex

Write: UW81XXXXYYYYYYYY

XXXX is register id (1-32), Ascii-coded hex

YYYYYYYY is 32-bit signed integer to be written to register, Ascii-coded hex

Position EEPROM Registers

Read: UR83XXXX

XXXX is register id (1-32), Ascii-coded hex

Returns: A 32-bit signed integer register value is returned as Ascii-coded hex

Write: UW83XXXXYYYYYYYY

XXXX is register id (1-32), Ascii-coded hex

YYYYYYYY is 32-bit signed integer to be written to register, Ascii-coded hex

Velocity Ram Registers

Read: UR85XXXX

XXXX is register id (1-16), Ascii-coded hex

Returns: A 32-bit signed integer register value is returned as Ascii-coded hex

Write: UW85XXXXYYYYYYYY

XXXX is register id (1-16), Ascii-coded hex

YYYYYYYY is 32-bit signed integer to be written to register, Ascii-coded hex

Velocity EEPROM Registers

Read: UR87XXXX

XXXX is register id (1-16), Ascii-coded hex

Returns: 32-bit signed integer register value returned as Ascii-coded hex

Write: UW87XXXXYYYYYYYY

XXXX is register id (1-16), Ascii-coded hex

YYYYYYYY is 32-bit signed integer to be written to register, Ascii-coded hex

Torque-Limit RAM Registers

Read: UR89XXXX

XXXX is register id (1-32), Ascii-coded hex

Returns: 16-bit integer register value is returned as low word of 32-bit integer, Ascii-coded hex

Write: UW89XXXXYYYYYYYY

XXXX is register id (1-32), Ascii-coded hex

YYYYYYYY is 32-bit integer, with low word being 16-bit value to be written to register, Ascii-coded hex

Torque-Limit EEPROM Registers

Read: UR8BXXXX

XXXX is register id (1-32), Ascii-coded hex

Returns: A 16-bit integer register value is returned as low word of 32-bit integer, Ascii-coded hex

Write: UW8BXXXXYYYYYYYY

XXXX is register id (1-32), Ascii-coded hex

YYYYYYYY is 32-bit integer, with low word being 16-bit value to be written to register, Ascii-coded hex

Absolute, incremental, and velocity moves now handle assigned registers as the source of position, velocity, and torque-limit values, both in programming motion and trigger events and actions. Register accesses in motion instructions and trigger evaluations involve a data range check, with invalid data causing a "F58" fault.

As an example of writing to a position register, assume the user has a serial master connected to an Axiom+. The user wishes to write a value of 8000 encoder counts to non-volatile position register # 17. 17 decimal equals 0011h, and 8000 decimal equals 00001F40h. Sending command string “UW83001100001F40” encoded ASCII will accomplish this register write. To verify this register operation, the user could have the master send string “UR830011” to read the value in position non-volatile register #17. “00001F40” would be the string returned by the Axiom+.

It should be noted that command strings must be sent contiguously, without time delays between characters, as the Axiom+ generates a fault if 0.2 seconds elapses between characters in any one command string. Also, carriage return and linefeed characters will be stripped and ignored. Serial communications settings must be: 19200 baud, 8 data bits, 1 stop bit, odd parity. No hardware or software handshaking is used.

Assign Register Value Sequential Instruction

A new sequential instruction has been added to assign a value to register. This register value is now available to any sequential instruction that can use a register value or the PLC register compare contact.

The Assign Register Value setup dialog box is shown below:

[image: image3.png]ASSIGN VALUE TO A REGISTER
Program Line #: 0004

Instruction Label: [ctck onLabelorCommenttoE) 3

Select Type and Register, Then Enter the New Value

Register Type Register to Assign Value to

i
[Tre 006 Teaim0s
 Velocity E &

 Torque

[NG + max torgue

OK | | CANCEL |

To assign a value to register, first select the type of register you want to use, either a position, velocity, or torque limit register. Then click on the ‘R’ button and select the register that will be receiving the new value, then go and enter the new value in the “New Register Value” text box.

The new register value is checked for validity based on the encoder counts per user unit value that is currently set on the sequential program screen. The user will only be allowed to click OK if the new value is valid.

Save Position to Register Sequential Instruction

This instruction was called “Store Teach Register” in some previous versions. It allows the user to have the sequential program store the current actuator position in a register to be used later in the program. The dialog box for this instruction is shown below:

[image: image4.png]Store Position to Teach Register

STORE ABSOLUTE POSITION TO REGISTER

Program Line #:

Instruction Label:

& Actual Position - Based on Axis Encoder Feedback

n - Following Error Distegarded

o Assign Register for Position Storage

POS 028 Pos 028 |[&]

o | omen|

The user can store the current actual or commanded position to the selected position register. The register is selected by clicking on the ‘R’ button next to the register text box.

Software Travel Limits

Added to the sequential program is the ability to define travel limits. These new travel limits entered in as a value of the user units selected on the Sequential Program workspace. The limit values are relative to a zero position set by or derived from the “Define Present Position” instruction or a Homing instruction. Upon Axiom+ power-up, software travel limit flags would be based on power-up position considered “zero”.

The user can define a default positive and negative motion limit value in the default motion parameter screen. These two entry fields have been added to the Default Motion Parameters screen.

[image: image5.png]Positive Motion Limit

Negative Motion Limit

They can also be changed by a sequential program instruction. The instruction definition dialog box is shown below.

[image: image6.png]oftware Travel Limits Value Change.

Software Travel its Parameter Change
Program Line #: 0002

(Cickan Label o Conment (0 £t
Instruction Label: " !
Instruction Comment:

Click Chieckbox to Select SW Travel Limit Parms) for Change
Enter New Valuie or Click "R" to Assign Register

o | omon |

In the instruction, the user can change one or both values by checking the “Change?” then either specify a new limit value or a value stored in a register. Changing the “+SW Travel Limit” changes default Positive Motion Limit and changing the “-SW Travel Limit” changes the default Negative Motion Limit.

Software travel limits result in special purpose Indexer Status Flags being set or cleared in the PLC based on absolute position. Indexer Status Flag #010 will evaluate as logic 1 if and only if the absolute position exceeds the value of positive software travel limit. Likewise, Indexer Status Flag #011 corresponds to the negative software travel limit. IS 011 will be automatically set if the absolute position is less than the value programmed for negative software travel limit. Otherwise, IS 011 will be cleared. It is up to the user to utilize these flags in PLC logic to produce the desired effect when travel limit ranges are exceeded. Control Command Flags ICC 011 and ICC 012 can be manipulated via PLC logic to generate travel limit faults. In this way a combination of physical limit switches and software travel limits can be used to generate over-travel faults. Switches and software travel limits can be conditionally ignored via appropriate PLC logic.

Branch on Position Compare Sequential Instruction

This new Sequential Program Instruction tests where the actuator’s current actual or commanded position is relative to a specified value to a value in a position register. The dialog box to enter the comparison parameters is shown below.

[image: image7.png]BRANCH ON POSITION COMPARE
Program Line #: 0001

nstructon Label: [—— oS

Select Source and the Value or Register to Compare

‘Comparison Type Enter Value or Click "R" to Select Register

(Absolute Position) || @ > Greater Than

@ Actual Position C >=Greater Than or Equal || [FOS 004 EndRail [[R] dneh

 Command Position || = Equal To
€ < HOT Equal To
€ <= Less Than or Equal
C < LessThan

Branch to this Label if Above Comparison is True
Branch Label

| i 1 =

To setup the comparison, the user selects which actuator position value to compare. Then select the type comparison you want to make, and then either enter in the position value or click on the ‘R’ button to select a position register that will have the value.

Careful attention should be taken when using “Equal To” and “NOT Equal To” comparison types. Because the position values are floating point values, the slightest variation between the actuator’s position value and the compare value will cause the two values to be not equal. This will cause an “Equal To” compare to almost always evaluate to FALSE and a “NOT Equal To” compare to almost always evaluates to TRUE.

Additional way to specify the In-Position Band

The Change In-Position Band sequential instruction has another entry field for the user to enter the desired value. Formerly, the user could only enter the In-Position Band as an encoder counts value. Now there is an additional entry field that allows the user to enter the In-Position band as a position value measured in the user’s selected units, (i.e. inches, meters). When done entering a value in one data field the other field is automatically updated to reflect the equivalent value. The conversion is based on the value of the number of encoder counts per unit that is specified on the sequential program workspace screen. The maximum value of the In-Position Band is 9,999 encoder counts, if the user enters a position value that exceeds the maximum encoder count value, the position value will be adjusted to the maximum value.

The new dialog box is shown below.

[image: image8.png]In-Position Band Value Change.

In-Position Band Value

Program Line #:

Instruction Label:

Instruction Comment:

Enter In-Position Band Limit

Expressed as Feedback Encoder Counts.

50 Encoder Counts

~-OR-

Expressed as Position Feedback

0.0125
o |

Branch on Position Compare Sequential Instruction

This new Sequential Program Instruction tests where the actuator’s current actual or commanded position is relative to a specified value to a value in a position register. The dialog box to enter the comparison parameters is shown below.

[image: image9.png]BRANCH ON POSITION COMPARE
Program Line #: 0001

nstructon Label: [—— oS

Select Source and the Value or Register to Compare

‘Comparison Type Enter Value or Click "R" to Select Register

(Absolute Position) || @ > Greater Than

@ Actual Position C >=Greater Than or Equal || [FOS 004 EndRail [[R] dneh

 Command Position || = Equal To
€ < HOT Equal To
€ <= Less Than or Equal
C < LessThan

Branch to this Label if Above Comparison is True
Branch Label

| i 1 =

To setup the comparison, the user selects which actuator position value to compare. Then select the type comparison you want to make, and then either enter in the position value or click on the ‘R’ button to select a position register that will have the value.

Careful attention should be taken when using “Equal To” and “NOT Equal To” comparison types. Because the position values are floating point values, the slightest variation between the actuator’s position value and the compare value will cause the two values to be not equal. This will cause an “Equal To” compare to almost always evaluate to FALSE and a “NOT Equal To” compare to almost always evaluate to TRUE.

Manipulation of PLC Flags Using ASCII Serial Port Commands

Various PLC flags can now be read and/or written using serial commands. General serial port commands are provided for reading and writing PLC I/O and flags. All data is sent and received as ASCII-coded hex. Command strings must be transmitted to the Axiom+ as a single, contiguous string. Settings are 19200 baud, 8 data bits, 1 stop bit, odd parity, no handshaking. Following is a listing of flags that can be manipulated and a description of serial command syntaxes:

Flags Available for Read and/or Write via serial port:

User Forcing Flags

16 total

read / write via serial port

read-only in PLC

Physical Inputs

15 total

read-only via serial port

read-only in PLC

Physical Outputs

8 total

read-only via serial port

read / write in PLC

PLC Local Flags

64 total

read-only via serial port

read/write in PLC

Indexer Status Flags
11 total

read-only via serial port

read-only in PLC

Indexer Control State Flags
8 total
read-only via serial port

read-only in PLC

Serial Command Syntax:

Note: All numerical data transmitted and received in Ascii-coded hex format. All data transmitted most-significant byte / word first.

User Forcing Flags

Read 1 Flag: UR03XXXX

XXXX is flag id (1-16), Ascii-coded hex

Returns: A 32-bit integer value is returned as Ascii-coded hex, with bit0 representing logic state of forcing flag queried

Set 1 Flag: US03XXXX

XXXX is flag id (1-16), Ascii-coded hex

The identified forcing flag will be set to 1

Returns: Nothing

Clear 1 Flag: UC03XXXX

XXXX is flag id (1-16), Ascii-coded hex

The identified forcing flag will be cleared to 0

Returns: Nothing

Read 1 Word: UR01XXXX

XXXX is word id (1 only), Ascii-coded hex

Returns: 32-bit integer value returned as Ascii-coded hex, with bits 0-15 representing logic state of forcing flags 1-16 respectively

Physical Inputs

Read 1 Word: UR05XXXX

XXXX is word id (1 only), Ascii-coded hex

Returns: A 32-bit integer value is returned as Ascii-coded hex, with bits 0-14 representing logic state of inputs 1-15 respectively

Physical Outputs

Read 1 Word: UR09XXXX

XXXX is word id (1 only), Ascii-coded hex

Returns: A 32-bit integer value is returned as Ascii-coded hex, with bits 0-7 representing logic state of outputs 1-8 respectively

PLC Local Flags

Read 1 Word: UR0DXXXX

XXXX is local flag word id (1-4), Ascii-coded hex

word1 corresponds to local flags 1-16

word2 corresponds to local flags 17-32

word3 corresponds to local flags 33-48

word4 corresponds to local flags 49-64

Returns: A 32-bit integer value is returned as Ascii-coded hex, with bits 0-15 representing logic state of local flags of selected word. Bit 0 of returned word corresponds to local flag 1 if word1 selected, local flag 17 if word2 queried, etc.

Indexer Status Flags

Read 1 Word: UR11XXXX

XXXX is word id (1 only), Ascii-coded hex

Returns: a 32-bit integer value returned as Ascii-coded hex, with bits 0-10 representing logic state of indexer status flags 1-11 respectively

Indexer Control State Flags

Read 1 Word: UR15XXXX

XXXX is word id (1 only), Ascii-coded hex

Returns: A 32-bit integer value is returned as Ascii-coded hex, with bits 0-7 representing logic state of indexer control state flags 1-8 respectively

As an example, suppose the user wants to program a master to set PLC forcing flag # 14. 14 decimal is 000E hex. Sending “US03000E” would cause forcing flag #14 to be set to logic 1, and any PLC logic incorporating this flag would be influenced accordingly.

Register Compare PLC Contact

There is new contact type available in a PLC program. It compares a drive current position, velocity or torque to a value stored in a register. If the configured comparison evaluates to TRUE, the contact closes.

[image: image10.png]COMPARE REGISTER

Select the curent absolute motor elerment to compare, the type of comparison to make,
and the register to corpare the elerment to.

Select Source and the Register to Compare
Element to Compare [l Comparission Type Register to Compare

@ Position @ > Greater Than st e =
C Velocity C < Less Than nenal
€ Torque

DONE CANCEL

To setup the contact, the user selects the drive feedback element they wish to compare. Then select the comparison type, either “Less Than” or “Greater Than”, then click on the ‘R’ button in the “Register to Compare” box to select the register that has the value to make the comparison against. Register comparisons involving position using the actual absolute position for comparison with register value. Velocity comparisons use actual (not command) velocity. Position and velocity comparisons are signed, i.e. both positive and negative values are recognized for comparison with regard to both process variable and register value. Torque comparisons are unsigned – magnitude only of actual torque (current) is considered when comparing with register value.

Note: An invalid (out-of-range) value in the register will cause the register compare contact to evaluate to an open contact.

Note: No state change is shown in PLC real-time scan mode for register comparison operation. The state of the comparison must be ascertained by viewing affected logic and output coils in the same rung.

New PLC Indexer Status Flag #012, Torque (current) At-Limit

A new PLC status flag has been added. It can be accessed for programming in PLC logic consistent with other flags. This flag will evaluate as logic one if and only if the Axiom+ output current to the motor is clipped at the level of peak torque that has been configured or programmed. As an example, if the sequential instruction executes an instruction setting the peak torque to 40% on a PV10 configured for full peak current (10 amps), the effective limit would then correspond to 4 amps. Any time the PV10 output current to the motor reaches this 4 amps limit and has been clipped at that value, the Indexer Status Flag #012, IS 012, would be automatically set. The flag would be automatically cleared when the torque output drops below 4 amps equivalent.

Project Save and Load

There is a new choice in the main menu called “Axiom+ Project File”. This allows the user to save and load a single file, upload and download to the drive with the three parts of a drive’s configuration. When you click on this button you are presented with the screen below. You are presented with the Project menu and Project Statistics list with some information about the contents of the current workspaces.

[image: image11.png]Axiom Plus Configuration and Programming Software [=1 E3

PROJECT

Diive Project Save / Load

Project Statistics

Indexer
Indexer Model:
Motor Model:

PLC Program
Number of Rungs:

Sequential Program

Project File Menu Options:

Upload from Indexer

Uploads from the connected Axiom+ Drive, it’s currently loaded drive configuration, sequential program and PLC program into the Configuration program workspaces.

Download to Indexer

Downloads to the Axiom+ drive the drive configuration, sequential program and PLC program that are currently in the Configuration program workspaces.

Open File

Load a drive configuration, sequential program and PLC program from a project file into the current workspaces.

Save File

Save the current drive configuration, sequential program and PLC program in the current workspaces to a project file.

Print

Prints the Sequential and PLC program listings of the programs in the workspace. Both a Sequential and a PLC program have to exist in the workspace in order for the project’s listings to be printed.

Exit

Returns to the main menu.

From this screen, you are able to save the entire drive configuration to a single file. The file contains the data entered in the “Axiom+ Indexer Setup/Config” screen, the Sequential and PLC programs that are currently in the workspace. Project files have a default extension of *.ADP, which is short for “Axiom Drive Project”. You can also download and upload the drive’s entire configuration at once from this screen. This simplifies reconfiguring a drive with a saved configuration and programs in that the user only has to go to one screen and loads one file and does one download to get the drive configured.

Before you can create a project file, all three parts of the drive configuration must have something in them. The drive’s model number and the model number of the attached motor must have been setup, there must be a Sequential Program and there must be a PLC program. You can either upload them from the drive, or load them from individual files in each of the three workspaces, or create them in the workspaces.

The original Save/Open and Upload/Download options are still available in each of the three workspaces to save an individual component of the project.

A snapshot of a drives current setup can be done by uploading the project from the drive and immediately saving it to a file. This snapshot can be quickly be reloaded into the drive or transferred to another drive at a later time if it should be needed.

Update to Printing Sequential Programs

The print button in the sequential program workspace now in addition to printing a listing of the program instructions, now prints a listing of the drive’s registers and any associated register comments.

Prompt for a Serial Port

If the user requests an action that communicates with a drive requiring that a serial port be setup and configured and there isn’t one, the user will be prompted to select one before proceeding with the action (see below). The user can select one of the four possible common serial ports or cancel the action. If the serial port the user selects does not exist on their system, an error message will pop up informing them to check their system configuration.

[image: image12.png]Serial Port Commu

& commpart1

€ commpart2 Comm Port
€ commpart3 Click "0K"to
€ Commpart 4 Open Port

OK CANCEL

1
1

