
Copley Motion Objects (CMO) Programmer’s
Guide

P/N 95-00290-000
Revision 4
June 2008The

 IC
R Smart

Actu
ato

r w
hic

h u
se

s t
his

 so
ftw

are
 is

a D
ISCONTIN

UED Tolo
mati

c P
rod

uc
t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

The ICR
SmartActuator which
uses this software is
a DISCONTINUED
Tolomatic Product.
This manual is
made available for
use with legacy ICR.

CMO Programmer’s Guide

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. i

TABLE OF CONTENTS
Product Warnings.. ii
About This Manual ... iii
1: Introduction ... 1

1.1: Windows-Based Control of Copley Amplifiers ... 2
1.2: Basic System Requirements .. 3

2: Installation ... 5
2.1: Installation Overview .. 6
2.2: Installation Procedures... 6

3: Fundamental Concepts and Procedures .. 7
3.1: Before Running a Copley Motion Objects Program ... 8
3.2: CAN Network.. 9
3.3: Adding a Reference to a Program.. 10
3.4: Object Initialization Sequence.. 12
3.5: Objects Contained by AmpObj... 12
3.6: Node Guarding ... 14
3.7: Error Handling .. 15
3.8: Units ... 15
3.9: Stepnet Amplifiers .. 16

A: CANopen Object ... 17
A.1: CANopen ... 17

B: Amplifier and Related Objects .. 19
B.1: AmpSettingsObj ... 20
B.2: Amplifier Initialization ... 21
B.3: Amplifier Information .. 21
B.4: Motor/Feedback Information.. 24
B.5: Save/Restore Amplifier Data ... 27
B.6: Node Guarding... 27
B.7: Current Loop .. 27
B.8: Velocity Loop ... 29
B.9: Position Loop ... 30
B.10: Tracking Windows.. 31
B.11: Status, Events, and Faults... 31
B.12: Amplifier Digital Inputs/Outputs ... 35
B.13: Amplifier Enable/Disable.. 39
B.14: Homing... 40
B.15: Quick Stop ... 43
B.16: Point-to-Point Moves.. 44
B.17: Amplifier Events ... 45
B.18: Amplifier Trace Methods and Properties ... 46
B.19: Other Methods and Properties... 49

C: The Linkage Object... 53
C.1: Linkage Object (LinkageObj) ... 53

D: The Event Object .. 57
D.1: Event Object .. 58

E: The I/O Object.. 59
E.1: I/O Modules.. 60

F: CopleyMotionLibrary Object.. 65
F.1: CopleyMotionLibraryObj .. 66

G: Masking ... 67
G.1: Masking ... 67

H: Object Revision History ... 69
H.1: Object Revision History ... 69 The

 IC
R Smart

Actu
ato

r w
hic

h u
se

s t
his

 so
ftw

are
 is

 a
DISCONTIN

UED Tolo
mati

c P
rod

uc
t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide Product Warnings

Copley Controls Corp. ii

PRODUCT WARNINGS
Use caution in designing and programming machines that affect the safety of
operators. !

WARNING

The examples in this book are for demonstration purposes only, providing guidelines
for programming. The programmer is responsible for creating program code that
operates safely for the amplifiers and motors in any given machine.

Failure to adhere to this warning can cause equipment damage, injury, or death.

Do not use Copley Motion Objects to implement an Emergency Stop

!
WARNING

An Emergency Stop must be hardwired directly to the amplifier. Do not depend on the
Copley Motion Objects software to provide for a timely emergency stop. Due to the
non-deterministic nature of Microsoft Windows, the software cannot guarantee a
timely emergency stop operation.

Failure to adhere to this warning can cause equipment damage, injury, or death.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide About this Manual

Copley Controls Corp. iii

ABOUT THIS MANUAL
Overview and Scope
This manual describes the installation and use of Copley Motion Objects.

Related Documentation
Readers of this book should also read information on CAN and CANopen at the “CAN in
Automation” website at http://www.can-cia.de/.
More information on the Copley Controls implementation of CANopen objects can be found in
Copley Controls’ CANopen Programmer’s Manual:
http://www.copleycontrols.com/Motion/pdf/CANopenProgrammersManual.pdf
For information on connecting an amplifier to the CANopen Network, see Copley Controls
CANopen Network CANBus Cabling Guide at:
 http://www.copleycontrols.com/Motion/pdf/CAN-Bus.pdf.
Information on other Copley Controls Software can be found at:
http://www.copleycontrols.com/Motion/Products/Software/index.html.
For more information on Microsoft’s COM architecture, please refer to:
http://www.microsoft.com/com/.

Comments
Copley Controls Corp. welcomes your comments on this manual.
See http://www.copleycontrols.com for contact information.

Copyrights
No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Copley Controls Corp.
CME 2 and CMO are registered trademarks of Copley Controls Corporation.
Windows NT, 2000, and XP, Visual Basic, and .NET are trademarks or registered trademarks of
the Microsoft Corporation.
LabVIEW is a registered trademark of National Instruments.

Document Validity
We reserve the right to modify our products. The information in this document is subject to change
without notice and does not represent a commitment by Copley Controls Corp.
Copley Controls Corp. assumes no responsibility for any errors that may appear in this document.

Revision History
Release Date DECO # Comments
1.0 September 2003 Initial publication.
1.1 March 2004 Reorganized.
3 December 2006 14845 New features.
4 June 2008 17137 Updated Web page references.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 1

CHAPTER
1: INTRODUCTION

This chapter provides an overview of Copley Motion Objects.
Contents include:

1.1: Windows-Based Control of Copley Amplifiers ... 2
1.1.1: Simplified Access to CANopen Functions... 2
1.1.2: Architectural Overview .. 2

1.2: Basic System Requirements .. 3
1.2.1: Computer and Operating System ... 3
1.2.2: Software .. 3
1.2.3: CAN Interface Card... 3
1.2.4: Amplifier Firmware .. 3

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Introduction CMO Programmer’s Guide

2 Copley Controls Corp.

1.1: Windows-Based Control of Copley Amplifiers
1.1.1: Simplified Access to CANopen Functions

The Copley Motion Objects simplify creation of Windows-based software for the control of Copley
Controls amplifiers over a CANopen network. They give programmers direct access to an
amplifier’s CANopen functions without having to learn the complexities of CANopen objects.
Copley Motion Objects were built using the Microsoft Component Object Model (COM)
architecture, and are fully automation compliant. This means that any Microsoft COM-compliant
software can access the Copley Motion Objects.

1.1.2: Architectural Overview
The following diagram illustrates the Copley Motion Objects/Microsoft COM model.

CAN Interface Card

PC with Microsoft Windows

Copley
CANopen
Amplifier

Copley
CANopen
Amplifier

Copley
CANopen
AmplifierCAN Interface Driver

Copley Motion Objects

COM-Compliant Application Code

CAN Network

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide Introduction

Copley Controls Corp. 3

1.2: Basic System Requirements
1.2.1: Computer and Operating System

Minimum hardware requirements:
• CPU: Minimum 400 MHz
• RAM: Minimum 128 MB
Operating Systems Supported: NT, 2000, XP.

1.2.2: Software
Copley Controls CME 2 software (latest released version) for tuning and configuration of the
amplifier.
The Copley Motion Objects were built using the Microsoft COM architecture and are fully
automation compliant. Any COM-compliant software can access them. This includes, but is not
limited to, VB 6.0, VB .NET, Visual C++, and LabVIEW.

1.2.3: CAN Interface Card
The PC on which Copley Motion Objects is installed needs a CAN interface card for
communication with the CAN network. CMO currently supports Copley, Kvaser, IXXAT, National
Instruments, and Vector. The current list of supported CAN interface cards can be obtained from
the Copley Controls website (http://www.copleycontrols.com).
NOTE: Only the drivers from Vector are supported for the Vector card.

1.2.4: Amplifier Firmware
Use of Copley Motion Objects requires the latest version of Copley Controls amplifier firmware.
The latest version can be downloaded at:
http://www.copleycontrols.com/Motion/Downloads/firmware.html

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Introduction CMO Programmer’s Guide

4 Copley Controls Corp.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 5

CHAPTER
2: INSTALLATION

This chapter describes the installation of Copley Motion Objects on a PC.
Chapter contents include:

2.1: Installation Overview .. 6
2.2: Installation Procedures... 6

2.2.1: Downloading Software from Web (Optional)... 6
2.2.2: Installing Copley Motion Objects Software ... 6

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Installation CMO Programmer’s Guide

6 Copley Controls Corp.

2.1: Installation Overview
The procedures described in this chapter copy the Copley Motion Objects, examples, and
documentation to the target PC. They also register the Copley Motion Object Dynamic Link Library
(.dll) file on the host PC. Once the Copley Motion Objects are in the Windows Registry, any
program that uses Microsoft COM can access them.
In addition, shortcuts to the examples and documentation are placed in the
Start�Programs�Copley Motion�CMO menu path.

2.2: Installation Procedures
2.2.1: Downloading Software from Web (Optional)
2.2.1.1 Choose or create a folder where you will download the software installation file.

2.2.1.2 In an internet browser, navigate to
http://www.copleycontrols.com/Motion/Downloads/index.html.

2.2.1.3 Under Software, click on CMO.

2.2.1.4 When prompted, save the file to the folder chosen or created in Step 2.2.1.1.
The folder should now contain a file named CMO.zip.

2.2.1.5 Extract the contents of the zip file to the same location.
The folder should now contain the files CMO.zip, CMO License.txt, Setup.exe, and
ReleaseNotes.txt.

2.2.1.6 If desired, delete CMO.zip to save disk space.

2.2.2: Installing Copley Motion Objects Software
2.2.2.1 If installing from a Copley Controls CMO CD, insert the CD.

Normally, inserting the CD causes the installation script to launch, and a Copley
Motion Objects Installation screen appears. If so, skip to Step 2.2.2.3.

2.2.2.2 If the software installation file was downloaded from the Copley Controls website,
navigate to the folder chosen or created in Step 2.2.1.1, and then double-click on
Setup.exe
OR
if you inserted the CD and the Copley Motion Objects Installation screen did not
appear, navigate to the root directory of the installation CD and then double-click on
Setup.exe.

2.2.2.3 Respond to the prompts on the Copley Motion Objects Installation screens to complete
the installation. We recommend accepting all default installation values.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 7

CHAPTER
3: FUNDAMENTAL CONCEPTS AND

PROCEDURES
Before exploring any of the Copley Motion Objects sample programs or developing a new
program, the programmer should be familiar with the contents of this chapter.

Contents include:

3.1: Before Running a Copley Motion Objects Program ... 8
3.2: CAN Network.. 9

3.2.1: Addressing and Bit Rate ... 9
3.2.2: CAN Communication and Connection Errors ... 9

3.3: Adding a Reference to a Program.. 10
3.3.1: Adding a Reference to a Program in VB... 10
3.3.2: Adding a Reference to a Program in LabVIEW: ... 11

3.4: Object Initialization Sequence.. 12
3.4.1: CAN Network, and Amplifier Objects .. 12

3.5: Objects Contained by AmpObj... 12
3.5.1: Overview ... 12
3.5.2: Creating and Initializing Objects Contained by AmpObj ... 13
3.5.3: Modifying an AmpObj Object .. 14

3.6: Node Guarding ... 14
3.6.1: Node Guarding Overview.. 14
3.6.2: Possibility of False Node Guarding Conditions... 14

3.7: Error Handling .. 15
3.8: Units ... 15

3.8.1: Default Amplifier Units... 15
3.8.2: User-Defined Units.. 15

3.9: Stepnet Amplifiers .. 16
3.9.1: Stepper and Servo Modes .. 16
3.9.2: Open Loop Stepper Mode Actual Position and Velocity ... 16
3.9.3: Stepper Mode with Encoder Actual Position and Velocity .. 16

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Fundamental Concepts and Procedures CMO Programmer’s Guide

8 Copley Controls Corp.

3.1: Before Running a Copley Motion Objects Program
The following general steps must be completed before running any Copley Motion Objects
program, including the demonstration programs described in this manual:

3.1.1.1 Review the Product Warnings at the beginning of this manual (p. ii).
3.1.1.2 Install Copley Motion Objects as described in Installation (p. 5).

3.1.1.3 Install the CAN interface card’s driver and hardware. See the CAN card manufacturer’s
documentation for more details.

3.1.1.4 Connect the amplifier, motor, and CAN network.

3.1.1.5 Set up and tune the motor and amplifier using Copley Controls CME 2 software.
Be sure to set the CAN address and bit rate as described in CAN Network (p. 9).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide Fundamental Concepts and Procedures

Copley Controls Corp. 9

3.2: CAN Network
3.2.1: Addressing and Bit Rate

Use Copley Controls CME 2 software to set up the amplifier’s CAN address and bit rate.
Setting the CAN address to 0 on an amplifier disables the CAN operation for that amplifier.
In accordance with the CAN DS-102 V2.0 Copley supports bit rates of 1,000, 800, 500, 250, 125,
50, and 20 kb/s.
For more information on changing the CAN address and bit rate settings, see the CME 2 User
Guide. Manuals are available for download under the Documents heading at
http://www.copleycontrols.com/motion/downloads.

3.2.2: CAN Communication and Connection Errors
Possible CAN communication and connection errors include:
• The CAN address is incorrect
• The bit rate is incorrect
• The wrong CAN channel is connected on a multiple-channel CAN card.
• The CAN bus is improperly terminated.
• CAN bus is wired improperly or disconnected.
If any of these errors occurs, the Copley Motion Object typically responds with the error "SDO
Timeout," indicating that there was an attempt to transmit a CANopen SDO information packet, but
the packet reception was not confirmed.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Fundamental Concepts and Procedures CMO Programmer’s Guide

10 Copley Controls Corp.

3.3: Adding a Reference to a Program
For a program to use the Copley Motion Objects, a reference must first be added. Below are
examples of adding a reference to the Copley Motion Objects in various environments.

3.3.1: Adding a Reference to a Program in VB
3.3.1.1 In the project workspace menu, choose the add reference command.

For instance, in .NET 2005: Project�Add Reference to open the Add Reference
window, then select the COM tab.

3.3.1.2 Scroll to highlight the entry for CMO Type Library.
3.3.1.3 Click OK.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide Fundamental Concepts and Procedures

Copley Controls Corp. 11

3.3.2: Adding a Reference to a Program in LabVIEW:
3.3.2.1 From the Refnum controls, choose Automation Refnum.

3.3.2.2 Place the Automation Refnum on the Front Panel.

3.3.2.3 Right-click on the Automation Refnum block and choose Select ActiveX Class. Then
browse to the CMO object in the Type Library list. Check
Show Creatable Objects Only and then select the desired CMO object.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Fundamental Concepts and Procedures CMO Programmer’s Guide

12 Copley Controls Corp.

3.4: Object Initialization Sequence
3.4.1: CAN Network, and Amplifier Objects

Every Copley Motion Objects application requires the creation and initialization of at least two
basic objects: one to represent the network, and one to represent each amplifier. These objects
should always be initialized in the following order:
1. CANopen network object: CANOpenObj. See the CANOpenObj method Initialize (p. 17).
2. Amplifier objects: AmpObj. See the AmpObj method Initialize (p. 21).
Failure to follow this sequence will result in an error.

3.5: Objects Contained by AmpObj
3.5.1: Overview

In addition to numerous methods and properties, the amplifier object is made up of several other
objects. These are:
Object Description
AmpInfoObj Read-only amplifier characteristics.
MotorInfoObj A legacy version of MotorInfoObj2.
MotorInfoObj2 All of the motor and feedback parameters.
CurrentLoopSettings Parameters used for tuning the current loop.
VelocityLoopSettings Parameters used to tune the velocity loop.
PositionLoopSettings A legacy version of PositionLoopSettings2.
PositionLoopSettings2 Parameters used to tune the position loop.
HomeSettings Used configure a homing routine.
ProfileSettings Used to configure a point-to-point move.
TrackingWindows Used to configure the position and velocity error windows.

Each of these objects has a set of related methods and properties.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide Fundamental Concepts and Procedures

Copley Controls Corp. 13

3.5.2: Creating and Initializing Objects Contained by AmpObj
The following examples use the ProfileSettings object to demonstrate the basic methods for using
any of the objects contained in the AmpObj.
The AmpObj must first be Initialized before accessing the objects as properties.
(See Initialize [p. 21].)
There are two ways to create an instance of the ProfileSettings object:

3.5.2.1 Get the instance from the AmpObj. This is the preferred method, because it sets all
of the properties of the ProfileSettings object equal to the values programmed in the
amplifier. Platform-specific instructions shown below.

Platform Command
VB 6.0 Set profileSettings = ampObj.profileSettings

VB .NET profileSettings = ampObj.ProfileSettings

LabVIEW

3.5.2.2 Create a new instance. This sets default values for all of the properties. Platform-
specific instructions shown below.

Platform Command
VB 6.0 Set profileSettings = New CMLCOMLib.profileSettings

VB .NET profileSettings = New CMLCOMLib.ProfileSettings()

LabVIEW

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Fundamental Concepts and Procedures CMO Programmer’s Guide

14 Copley Controls Corp.

3.5.3: Modifying an AmpObj Object
Once an instance of the ProfileSettings object has been created as described in Creating and
Initializing Objects Contained by AmpObj (p. 13), any of the properties can be changed and written
back to the amplifier. See the platform-specific instructions below.
Platform Command
VB 6.0 ‘Change a property

profileSettings.ProfileType = CML_PROFILE_TYPE.PROFILE_VELOCITY
‘Write the profile settings to the amplifier
ampObj.profileSettings = profileSettings

VB .NET ‘Change a property
profileSettings.ProfileType = CMLCOMLib.CML_PROFILE_TYPE.PROFILE_VELOCITY
‘Write the profile settings to the amplifier
ampObj.ProfileSettings = profileSettings

LabVIEW

3.6: Node Guarding
3.6.1: Node Guarding Overview

Node guarding is a CANopen device-monitoring feature. The network manager configures the
amplifier to expect node-guarding messages at some interval. The network manager then sends a
message to the amplifier at that frequency, and the amplifier responds with a node-guarding
message. This allows both the network manager and the amplifier to identify a network failure if
the guarding messages stop. CMO can turn node guarding on or off, and change the interval. If the
amplifier detects that the guarding messages stop, it will abort a move in progress and set the
AMPEVENT_NODEGUARD bit active in the Amplifier Event Register (p. 33). If node guarding is
turned on, we recommend monitoring amplifier events for the node guard event. This can be done
through the EventObj (see D: The Event Object [p. 57]) or through a timer, which periodically reads
the event mask. See Node Guarding (p. 27).

3.6.2: Possibility of False Node Guarding Conditions
In a Windows environment, various factors can delay node-guarding messages, resulting in “false”
node guarding conditions. These factors include the non-deterministic nature of Windows
operating systems and the performance effects of other processes running on the PC. Thus, by
default, node guarding is disabled in Copley Motion Objects. If node guarding is required, do note
enable node guarding without first testing the performance characteristics and usage load of the
PC being used, and adjusting the node guarding parameters accordingly using the
AmpSettingsObj Methods and Properties (p. 20).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide Fundamental Concepts and Procedures

Copley Controls Corp. 15

3.7: Error Handling
Copley Motion Objects test for error conditions. If an error is present, Copley Motion Objects
reports the error in the form of COM-compatible error objects. The error object includes a text
description, error number, and the source of the error. For better error handling, each program
should include error-handling procedures to guarantee that unexpected motion does not occur.

3.8: Units
3.8.1: Default Amplifier Units

The default Copley Motion Objects units are encoder counts.
• Position or Distance: encoder counts
• Velocity: 0.1 encoder counts per second
• Acceleration: 10 encoder counts per second2

• Deceleration: 10 encoder counts per second2

• Jerk: 100 encoder counts per second3

3.8.2: User-Defined Units
The Amplifier Object property CountsPerUnit (p. 49) can store a scaling factor for converting
between an amplifier’s default units (encoder counts) and user-defined units. Default = 1. For
example, with a 5-miron encoder on a linear motor, to program in millimeters, set CountsPerUnit =
200, since there are 200 encoder counts in one millimeter.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Fundamental Concepts and Procedures CMO Programmer’s Guide

16 Copley Controls Corp.

3.9: Stepnet Amplifiers
3.9.1: Stepper and Servo Modes

On power up/reset Stepnet amplifiers start in stepper mode. If it is necessary to switch a Stepnet
amplifier from step to servo mode, set the property AmpMode (p. 49) to one of the servo modes
listed in Modes of Operation for CML_AMP_MODE (p. 50). This should be done immediately after
amplifier initialization.
In the following example, the amplifier is initialized and then the amplifier’s mode of operation is
switched to the servo Can profile mode:

ampObj.Initialize(canOpen, 1)
ampObj.AmpModeWrite = CMLCOMLib.CML_AMP_MODE.AMPMODE_SERVO_CAN_PROFILE

3.9.2: Open Loop Stepper Mode Actual Position and Velocity
When running open loop stepper mode, actual position and actual velocity readings remain at
zero. The motor’s commanded position can be monitored with
CMLCOMLib.AmpObj.PositionCommand (Units: microsteps).
The motor’s commanded velocity can be monitored with CMLCOMLib AmpObj.TrajectoryVel
(Units microsteps/second).
When the amplifier is disabled, PositionCommand goes to zero because the amplifier cannot tell if
the motor moves while disabled. As long as the amplifier is enabled, relative and absolute moves
can be made based on PositionCommand.

3.9.3: Stepper Mode with Encoder Actual Position and Velocity
When running in stepper mode with an encoder, actual position can be monitored with
CMLCOMLib.AmpObj.PositionActual (Units: microsteps). Actual velocity can be monitored with
CMLCOMLib.AmpObj.VelocityLoad (Units microsteps/second).
NOTE: Actual velocity can also be monitored with CMLCOMLib.AmpObj.VelocityActual, but the
units will be in encoder counts/second. This is not recommended, because user units will also be
applied to this value.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 17

APPENDIX
A: CANOPEN OBJECT

This appendix describes the CANopen network object.
NOTE: Unless otherwise stated, all properties described in this appendix have read/write access.
All methods return an HRESULT. In the event of an error, CMO reports the error in the form of
COM-compatible error objects. See Error Handling (p. 15).

A.1: CANopen
All the methods and properties described below are members of CMLCOMLib.CANOpenObj.
Method Initialize ()
Initializes the CANopen network.
Property ErrorFrameCounter As Long
Read-only. The number of error frames received over then CAN network since the last time the counter was cleared.
Method ClearErrorFrameCounter()
Clears the CAN error frame counter.
Property BitRate As CML_BIT_RATES
CANopen Bit Rate. If the Bit Rate is not set, CMO uses the default value of 1 Mb/s.
CML_BIT_RATES Bit Rate Values

Value (Const) Description
BITRATE_1_Mbit_per_sec = 1000000 1 Mbit per second CAN bit rate
BITRATE_800_Kbit_per_sec = 800000 800Kbit per second CAN bit rate
BITRATE_500_Kbit_per_sec = 500000 500Kbit per second CAN bit rate
BITRATE_250_Kbit_per_sec = 250000 250Kbit per second CAN bit rate
BITRATE_125_Kbit_per_sec = 125000 125Kbit per second CAN bit rate
BITRATE_50_Kbit_per_sec = 50000 50Kbit per second CAN bit rate
BITRATE_20_Kbit_per_sec = 20000 20Kbit per second CAN bit rate

Property PortName As String
Port name for the CAN card. The port name is a combination of the CAN card name and the channel number as shown
below. If the port name is not set, CMO uses channel 0 of the first supported CAN card found.

CAN Card Channel PortName
0 copley0 Copley

 1 copley1
Kvaser 0 kvaser0
National
Instruments

0 ni0

Vector 0 vector0
IXXAT 0 ixxat0

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

A: CANopen Object CMO Programmer’s Guide

18 Copley Controls Corp.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 19

APPENDIX
B: AMPLIFIER AND RELATED OBJECTS

This appendix details the amplifier object and other objects related to amplifier settings and status.
Note: Unless otherwise stated, all properties described in this appendix have read/write access. All
methods return an HRESULT. In the event of an error, CMO reports the error in the form of COM-
compatible error objects. See Error Handling (p. 15). Contents include:

Function Group .. PAGE
B.1: AmpSettingsObj ... 20
B.2: Amplifier Initialization ... 21
B.3: Amplifier Information .. 21
B.4: Motor/Feedback Information.. 24
B.5: Save/Restore Amplifier Data ... 27
B.6: Node Guarding... 27
B.7: Current Loop .. 27
B.8: Velocity Loop ... 29
B.9: Position Loop ... 30
B.10: Tracking Windows.. 31
B.11: Status, Events, and Faults... 31
B.12: Amplifier Digital Inputs/Outputs ... 35
B.13: Amplifier Enable/Disable.. 39
B.14: Homing... 40
B.15: Quick Stop ... 43
B.16: Point-to-Point Moves.. 44
B.17: Amplifier Events ... 45
B.18: Amplifier Trace Methods and Properties ... 46
B.19: Other Methods and Properties... 49

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

20 Copley Controls Corp.

B.1: AmpSettingsObj
B.1.1: Overview

AmpSettingsObj contains information about the amplifier’s CANopen settings. All of the properties
have both read and write access. The Amplifier Settings Object is used in the InitializeExt method
of the Amplifier Object to customize the amplifier’s CANopen settings.
The basic steps for using the AmpSettingsObj are:
1 Declare an AmpSettingsObj.
2 Create a new instance of it.
3 Change one or more properties of the AmpSettingsObj.
4 Call AmpObj’s InitializeExt method and pass AmpSettingsObj as one of the parameters. See

InitializeExt (p. 21).
B.1.2: AmpSettingsObj Methods and Properties

Each of the following properties is a member of CMLCOMLib_AmpSettingsObj.
Property guardTime As Integer
Node guarding guard time. This property gives the node-guarding period for use with this node. This is the period
between node guarding request messages sent by the master controller. Units: milliseconds. Default: 0.
Property heartbeatPeriod As Integer
Configures the heartbeat period used by this amplifier to transmit its heartbeat message. If this property is set to zero,
then the heartbeat protocol is disabled on this node. Units: milliseconds. Default: 0.
Property heartbeatTimeout As Integer
Additional time to wait before generating a heartbeat error. Units: milliseconds. Default: 0.
Property lifeFactor As Integer
Node guarding lifetime factor. The lifetime factor is treated as a multiple of the guard time. If this property and the node
guard time are both non-zero, and the heartbeatTime is zero, then node guarding will be setup for the amplifier.
Units: milliseconds. Default = 3.
Property resetOnInit As Boolean
If True, the amplifier will be reset when it is initialized. This has the advantage of clearing out any fault conditions and
putting the amplifier in a known state. Default: False.
Property enableOnInit As Boolean
Enable amplifier at init time. If true, then the amplifier will be enabled at the end of a successful initialization. If false, the
amplifier will be disabled at the end of a successful initialization. Default: True
Property synchID As Long
Synch object CAN message ID. This is the message ID used for the synch message.
Default: 128 (0x00000080)
Property synchPeriod As Long
Synch object period. The synch object is a message that is transmitted by one node on a CANopen network at a fixed
interval. This message is used to synchronize the devices on the network.
Units: microseconds. Default: 10000.
Property synchProducer As Boolean
If true, this node will produce synch messages. If 'synchUseFirstAmp' property is set to true, this property will not be
used and will be overwritten during initialization. Default: false.
Property synchUseFirstAmp As Boolean
Use first initialized amplifier as synch producer. If this setting is true (default), then the first amplifier to be initialized will
be set as the synch producer, and all other amplifiers will be setup as synch consumers. Default: true
Property timeStampID As Long
High-resolution time stamp CAN ID. The time stamp is a PDO that is generated by the synch producer. It is used to
synchronize the clocks of the amplifiers. Setting this to zero will disable the time stamp message.
 Default: 384 (0x00000180).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 21

B.2: Amplifier Initialization
Each of these amplifier initialization methods is a member of CMLCOMLib.AmpObj.
Method Initialize (canOpenObj As ICANopenObj, nodeId As Integer)
Initializes the amplifier with the CANOpenObj, the specified node ID, and default Amplifier Settings.
Parameters:
canOpenObj: An instance of a CanOpenObj that has already been initialized.
nodeId: The node ID of the amplifier.
Method InitializeExt(canOpenObj As ICANopenObj, nodeId As Integer, ampSettingsObj As
IAmpSettingsObj)
Initializes amplifier with the CANOpenObj, the specified node ID, and the AmpSettingsObj. See B.1: AmpSettings (p. 20).
Parameters:
canOpenObj: An instance of a CanOpenObj that has already been initialized.
nodeId: The node ID of the amplifier.
ampSettingsObj: An instance of an AmpSettingsObj with customized settings.
Method ReInit()
Re-initializes an amplifier, using the same initialize method that was previously used.

B.3: Amplifier Information
B.3.1: Amplifier Information-Related Amplifier Object Properties
The following amplifier property is a member of CMLCOMLib.AmpObj.
Property AmpInfo As CMLCOMLib.AmpInfoObj
Read-only. Contains the AmpInfoObj. See Objects Contained by AmpObj (p. 12) and B.3.2 AmpInfoObj, below.

B.3.2 AmpInfoObj
Each of the following Read-Only properties is a member of CMLCOMLib.AmpInfoObj. An instance
of this object is obtained from the AmpObj.
Property crntCont As Double
Amplifier continuous current rating. Units: A.
Property crntPeak As Double
 Amplifier peak current rating. Units: A.
Property crntScale As Integer
 Current scaling factor.
Property crntTime As Double
Time at amplifier peak current. Units: seconds.
Property mfgInfo As String
Amplifier's manufacturing information string.
Property mfgName As String
Name of the amplifier manufacturer.
Property mfgWeb As String
Web address of the manufacturer.
Property model As String
Model number string.
Property modes As Long
Supported modes of operation as described in CANopen Profile for Drives and Motion Control (DSP 402).

Bits Mode Description
0 Profile position mode
1 Profile velocity mode
5 Homing mode
6 Interpolated position mode

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

22 Copley Controls Corp.

…AmpInfoObj, continued
Property pwm_dbcont As Integer
PWM deadband at continuous current. Units: servo cycles.
Property pwm_dbzero As Integer
PWM deadband at zero current. Units: servo cycles.
Property pwm_off As Integer
PWM off time. Units: tens of nanoseconds.
Property pwmPeriod As Double
PWM period. Units: seconds.
Property refScale As Integer
Reference scaling factor.
Property serial As Long
Serial number of the amplifier’s printed circuit board.
Property servoPeriod As Double
Servo period. Units: seconds.
Property swVer As String
The firmware version number in the amplifier.
Property tempHyst As Double
Temperature hysteresis for over temperature fault. Units: degrees C.
Property tempMax As Double
Set point for over temperature fault. Units: degrees C.
Property type As Integer
Amplifier type.

Value Amplifier Type
512 Accelnet Module
513 Xenus
515 Accelnet Panel
518 Xenus, resolver version
519 Xenus, with emulated encoder output
521 Accelnet Micro Panel
523 Accelnet Panel, with emulated encoder output
524 Accelnet Micro Module
526 Xenus, with differential digital inputs
527 Accelnet Panel
528 Accelnet Micro Panel, analog encoder version
576 Stepnet Module
578 Stepnet Panel
579 Stepnet Micro Module

Property voltMax As Double
Set point for an over voltage fault. Units: 0.1V.
Property voltMin As Double
Set point for under voltage fault. Units: 0.1 V.
Property voltScale As Integer:
Voltage scaling factor. Units: 0.1 V.
Property aencScale As Integer
The analog encoder-scaling factor.
Property regenPeak As Integer
The internal regen circuit peak current limit Units: 0.01 A.

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 23

…AmpInfoObj, continued
Property regenCont As Integer
The internal regen circuit continuous current limit. Units: 0.01 A.
Property regenTime As Integer
The internal regen circuit time at peak current. Units: milliseconds.
Property voltHyst As Double
Bus voltage hysteresis for over voltage shutdown. Units: 0.1 Volts.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

24 Copley Controls Corp.

B.4: Motor/Feedback Information
B.4.1: Motor/Feedback-Related Amplifier Object Methods and properties
Each of the following motor/feedback methods and properties is a member of
CMLCOMLib.AmpObj.
Method ReadAnalogFeedback(Sin As Integer, Cos As Integer)
Reads the raw voltage on the two analog feedback inputs. Units: 0.1 mV.
Property HallState As Integer
Read-only. Gets the current digital hall sensor state. The hall state is the value of the hall sensors after any adjustments
have been made to them, based on the Property hallWiring property of MotorInfoObj2. See B.4.2: MotorInfoObj (p. 24).
Property PhaseAngle As Integer
Read-only. Gets the motor phase angle. The phase angle describes the motor's electrical position with respect to its
windings. Units: degrees.
Property MotorInfoObj2 As CMLCOMLib.MotorInfoObj
This property contains the MotorInfoObj. See Objects Contained by AmpObj (p. 12) and B.4.2: MotorInfoObj, below.

B.4.2: MotorInfoObj2
Each of the following Motor/Feedback properties is a member of CMLCOMLib.MotorInfoObj2. An
instance of this object is obtained from the AmpObj.
Property backEMF As Double
Back EMF constant. Units: Rotary: V/KRPM, Linear: V/m/S.
Property brakeDelay As Integer
Delay between applying brake & disabling PWM. Units: milliseconds.
Property brakeVel As Double
Velocity below which the brake will be applied. User-defined units/second; see Units (p. 15).
Property ctsPerRev As Long
Encoder counts/revolution. Rotary motors only.
Property eleDist As Long
Motor electrical distance. Linear motors only. Units: encoder units/electrical phase.
Property encRes As Integer
Encoder resolution. Linear motors only. Units: encoder units/count.
Property encReverse As Boolean
Reverse encoder direction if True.
Property encType As Integer
Encoder type.

Value Description
0 Incremental quadrature encoder.
1 No encoder.
2 Analog encoder.
3 Secondary quad encoder from input lines.
4 Low frequency analog encoder. For use with Copley ServoTube motor.
5 Resolver.

Property encUnits As Integer
Encoder units. Linear motor only.
Property hallOffset As Integer
Hall offset. Units: degrees.

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 25

…MotorInfoObj, continued
Property hallType As Integer
Type of hall sensors on the motor.

Value Description
0 No hall sensors available.
1 Digital hall sensors.
2 Analog hall sensors.

Property hallWiring As Integer
Hall wiring code. This bit-mapped value defines the wiring of the hall sensors.

Bit Description
0-2 The hall wiring code (see below).
3 Reserved.
4 Invert W hall input if set.
5 Invert V hall input if set.
6 Invert U hall input if set.
7 Reserved.
8 Swap analog halls if set.
9-15 Reserved.

The hall wiring codes define the order of the hall connections. Hall code ordering:
Hall Wiring Code Description
0 U V W
1 U W V
2 V U W
3 V W U
4 W V U
5 W U V
6,7 Reserved

Property hallVelocityShift as Integer
This value is used to scale up the calculated velocity in Hall velocity mode (Halls used for feedback in velocity mode). It
specifies a left shift value for the position and velocity information calculated in that mode.
Property hasBrake As Boolean
Motor has a brake if True.
Property inductance As Double
Motor inductance (Henrys).
Property inertia As Double
Inertia. Units: Kg-cm2.
Property mfgName As String
Name of the motor manufacturer.
Property model As String
Motor model number.
Property mtrReverse As Boolean
Reverse motor wiring if true.
Property poles As Integer
Number of pole pairs (number of electrical phases) per rotation. Rotary motors only.
Property resistance As Double
Motor resistance. Units: Ω.

Continued…
The

 IC
R Smart

Actu
ato

r w
hic

h u
se

s t
his

 so
ftw

are
 is

 a
DISCONTIN

UED Tolo
mati

c P
rod

uc
t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

26 Copley Controls Corp.

…MotorInfoObj, continued
Property stopTime As Integer
Delay between disabling amplifier and applying brake. During this time, amplifier attempts to stop motor.
Units: milliseconds.
Property tempSensor As Boolean
Motor has a temperature sensor.
Property trqConst As Double
Torque constant (rotary), Force constant (linear). Units: Rotary: Newton Meters/A; Linear: Newtons/A.
For stepper motors, the value returned is Rated Torque/Rated Current.
Property trqCont As Double
Continuous torque (rotary), Continuous force (linear). Units: Rotary: Newton Meters; Linear: Newtons.
This parameter is not used for stepper motors.
Property trqPeak As Double
Peak torque (rotary), Peak force (linear), Rated Torque (stepper motors).
Units: Rotary, Stepper: Newton Meters; Linear: Newtons.
Property type As Integer
Motor type.

Value Description
0 Rotary motor.
1 Linear motor.

Property velMax As Double
Maximum motor velocity. User-defined units/second; Units (p. 15).
Property encShift As Integer
Analog feedback interpolation value (used only with Analog feedback).
Property ndxDist As Long
Index mark distance (reserved for future use).
Property stepsPerRev As Long
Microsteps/revolution (used for Stepnet amplifiers).
Property loadEncType As Integer
Load Encoder Type:

Bit Description
0-2 Encoder type value (see below).
3 Reserved.
4 Linear if set, rotary if clear.

Load encoder type values:
Value Description
0 No load encoder present.
1 Primary (differential) quadrature encoder.
2 Analog encoder.
3 Secondary quadrature encoder from input lines.
4 Low-frequency analog encoder. For use with Copley ServoTube motor.
5 Resolver

Property loadEncRes As Long
Load Encoder Resolution: This is encoder counts/rev for rotary encoders and nanometers/count for linear encoders.
Property loadEncReverse As Boolean
Load Encoder Reverse: Reverse load encoder direction if true.
Property resolverCycles As Integer
Number of resolver cycles per motor revolution.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 27

B.5: Save/Restore Amplifier Data
The following methods are used to save and restore amplifier data. They are members of
CMLCOMLib.AmpObj
Method LoadFromFile (name As String, line As Long)
Loads specified amplifier data file. Presently supports loading *.ccx files created by CME 2 version 3.1 and later.
NOTE: This method loads the file into the amplifier’s RAM (except the motor data, which exists in Flash only). To save
the data to the amplifier’s Flash, call the SaveRamToFlash method (see below).
Parameters:
name: Name (and optionally path) of the file to load.
line: If not NULL, the last line number read from the file is returned here.
Method SaveRamToFlash()
Saves parameters stored in the amplifiers volatile RAM memory to non-volatile flash memory

B.6: Node Guarding
The following methods, members of CMLCOMLib.AmpObj, are used to control node guarding.
Method StartGuarding(guardTime As Integer, lifeFactor As Integer)
Starts node guarding with the specified guard time and life factor. Units: time: milliseconds, lifeFactor: none
Method StopGuarding()
Disables node guarding & heartbeat monitoring.
Method ClearNodeGuardEvent()
Attempts to clear a node guarding event condition.

B.7: Current Loop
B.7.1: Current Loop-Related Amplifier Object Properties
The following current loop methods and properties are members of CMLCOMLib.AmpObj.
Property CurrentLimited As Integer
Read-only. Gets the limited motor current. The commanded current is passed to a current limiter. The output of the
current limiter is the limited current, which is passed as an input to the current loop. Units: 0.01 A.
Property CurrentCommand As Integer
Read-only. This current is the input to the current limiter. Units: 0.01 A.
Property CurrentActual As Integer
Read-only. Gets the actual motor current. This current is based on the amplifier’s current sensors, and indicates the
portion of current that is being used to generate torque in the motor. Units: 0.01 A.
Method ReadMotorCurrent (Ucurrent As Integer, Vcurrent As Integer)
Reads the actual current values read directly from the amplifier's current sensors. Note that if the motor wiring is being
swapped in software, the U and V reading will be swapped. Units: 0.01 A.
Property TorqueTarget As Integer
In profile torque mode, this property is an input to the amplifier’s internal trajectory generator. Any change to the target
torque triggers an immediate update to the trajectory generator. Units: 0.01 A.
Property TorqueDemand As Integer
Read-only. In Profile Torque mode, this is the output value of the torque limiting function. Units: 0.01 A.
Property TorqueActual As Integer
Read-only. Instantaneous torque in the motor. Units: 0.01 A.
Property TorqueSlope As Integer
Torque acceleration or deceleration. Units: 0.01 A.
Property CurrentLoopSettings As CMLCOMLib.CurrentLoopSettings
Contains the CurrentLoopSettings object. Units: 0.01 A. See B.7.2: CurrentLoopSettings Object (p. 28).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

28 Copley Controls Corp.

B.7.2: CurrentLoopSettings Object
The following current loop properties are members of CMLCOMLib. CurrentLoopSettings. An
instance of this object is obtained from the AmpObj.
Property CrntLoopKp As Integer
Current loop proportional gain value.
Property CrntLoopKi As Integer
Current loop integral gain value.
Property CrntLoopCrntOffset As Integer
Current loop offset value. Units 0.01 A.
Property CrntLoopPeakCrntLim As Integer
Peak current limit. Maximum current that can be applied to the load at any time. In stepper mode, this is the boost
current. Units: 0.01 A.
Property CrntLoopContCrntLim As Integer
Continuous current limit. Max current that can continuously be applied to load. In stepper mode, this is the run current.
Units: 0.01 A.
Property CrntLoopPeakCrntTime As Integer
Time at peak current limit. In stepper mode, this is time at boost current. Units: milliseconds.
Property CrntLoopStepHoldCrnt As Integer
The Stepper Hold Current. Current used to hold the motor at rest. Units: 0.01A
Property CrntLoopStepRunToHoldTime As Integer
The Stepper Run To Hold Time. The period of time, beginning when a move is complete, to when the output current is
switched to the hold current. Units: milliseconds.
Property CrntLoopVolControlDelayTime As Integer
The Voltage Control Delay Time. If set to zero feature is disabled. Units: milliseconds.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 29

B.8: Velocity Loop
B.8.1: Velocity Loop-Related Amplifier Object Properties
The following velocity loop properties are members of CMLCOMLib.CML_AmpInfo.
Property VelocityLimited As Double
Read-only. Gets the limited velocity, which is the result of applying the velocity limiter to the commanded velocity. User-
defined units/second; see Units (p. 15).
Property VelocityCommand As Double
Read-only. Gets the commanded velocity. The commanded velocity is the velocity value passed to the velocity limiter,
and, from there, to the velocity control loop. User-defined units/second; see Units (p. 15).
Property VelocityActual As Double
Read-only. The motor velocity is calculated by the amplifier based on the change in position. For dual encoder systems,
the load velocity can be queried by reading the VelocityLoad property. User-defined units/second; see Units (p. 15).
Property VelocityLoad As Double
Read-only. The load velocity is estimated by the amplifier based on the change in position seen at the load encoder. For
dual encoder systems, the motor velocity can be queried reading the VelocityActual property. User-defined units/second;
see Units (p. 15).
Property VelocityLoopSettings As CMLCOMLib.VelocityLoopSettings
This property contains the VelocityLoopSettings object. See Objects Contained by AmpObj (p. 12)
and B.8.2: VelocityLoopSettings Object, below.

B.8.2: VelocityLoopSettings Object
The following velocity loop properties are members of CMLCOMLib. VelocityLoopSettings. An
instance of this object is obtained from the AmpObj.
Property VelLoopKp As Integer
Velocity loop proportional gain value.
Property VelLoopKi As Integer
Velocity loop integral gain value.
Property VelLoopKaff As Integer
Velocity loop acceleration feed forward value.
Property VelLoopShift As Integer
Velocity shift value. After velocity loop is calculated, the result is right-shifted this many times to arrive at the commanded
current value. This allows the velocity loop gains to have reasonable values for high-resolution encoders.
Property VelLoopMaxVel As Double
Velocity loop maximum allowed velocity. Limits the velocity command before the velocity loop uses it to calculate output
current. User-defined units/second; see Units (p. 15).
Property VelLoopMaxAcc As Double
Velocity loop maximum acceleration limit. Limits the rate of change of the velocity command input to the velocity loop. It
is used when the magnitude of the command is increasing. User-defined units/second2; see Units (p. 15).
Property VelLoopMaxDec As Double
Velocity loop maximum deceleration limit. Limits the rate of change of the velocity command input to the velocity loop. It
is used when the magnitude of the command is decreasing. User-defined units/second2; see Units (p. 15).
Property VelLoopEstopDec
Deceleration used for emergency stop. Setting this value to zero indicates that the deceleration is unlimited. User-
defined units/second2; see Units (p. 15).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

30 Copley Controls Corp.

B.9: Position Loop
B.9.1: Position Loop-Related Amplifier Object Properties
The following position loop properties are members of CMLCOMLib AmpObj.
Property PositionError As Double
The position error (difference between position command and actual position). User-defined units; see Units (p. 15).
Property PositionCommand As Double
The instantaneous position command. This position is the command input to the servo loop. The position command is
calculated by the trajectory generator and updated every servo cycle. User-defined units; see Units (p. 15).
Property PositionActual As Double
The actual position used by the servo loop. For dual encoder systems, this will be the load encoder position. To get the
motor encoder position on such a system, read the PositionMotor property. User-defined units; see Units (p. 15).
Property PositionMotor As Double
The actual motor position. For single encoder systems, this value is identical to the PositionActual property. For dual
encoder systems, this function returns the actual motor position and the PositionActual property may be used to get the
load encoder position. User-defined units; see Units (p. 15).
Property PositionLoopSettings2 As CMLCOMLib.PositionLoopSettings2
This property contains the PositionLoopSettings2 object. See Objects Contained by AmpObj (p. 12)
and B.9.2: PositionLoopSettings2 Object, below.

B.9.2: PositionLoopSettings2 Object
The following position loop properties are members of CMLCOMLib. PositionLoopSettings2. An
instance of this object is obtained from the AmpObj.
Property PosLoopKp As Integer
Position loop proportional gain value.
Property PosLoopKvff As Integer
Position loop velocity feed forward value.
Property PosLoopKaff As Integer
Position loop acceleration feed forward value.
Property PosLoopScale as Integer
The output of the position loop is multiplied by this value before being passed to the velocity loop. This scaling factor is
calculated such that a value of 100 is a 1.0 scaling factor. This parameter is most useful in dual loop systems.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 31

B.10: Tracking Windows
B.10.1: Tracking Windows - Related Amplifier Object Properties
The following amplifier property is a member of CMLCOMLib.AmpObj.
Property TrackingWindows As CMLCOMLib.TrackingWindows
This property contains the TrackingWindows object. See Objects Contained by AmpObj (p. 12)
and B.10.2 TackingWindows Object, below.

B.10.2 TackingWindows Object
Each of the following Amplifier Settings is a member of CMLCOMLib.TrackingWindows. An
instance of this object is obtained from the AmpObj.
Property PositionErrorWindow As Double
Position error window. If the absolute value of the motor's position error exceeds this value, a tracking error occurs. The
amplifier aborts move in progress and stops the motor with the velocity loop. User-defined units; see Units (p. 15).
Property PositionWarnWindow As Double
Position warning window. If the absolute value of the position error exceeds this value, then a tracking warning will result.
A tracking warning causes a bit in the amplifier’s status to be set. User-defined units; see Units (p. 15).
Property SettlingWindow As Double
Position settling window. An amplifier is settled in position after a move when its absolute position error value has been
within the settling window for a time greater then the settling time. User-defined units; see Units (p. 15).
Property SettlingTime As Integer
Position settling time value. An amplifier is settled in position after a move when its absolute position error value has
been within the settling window for a time greater then the settling time value. Units: milliseconds.
Property VelocityWarnWindow As Double
Velocity warning window. If the absolute value of the velocity error exceeds this value, then a velocity warning results. A
velocity warning causes a bit in the amplifier’s status to be set. User-defined units; see Units (p. 15).
Property VelocityWarnTime As Integer
Velocity warning window time value. If velocity error exceeds velocity warning window, a bit is set in the amplifier status
word. Bit is not cleared until velocity error stays within warning window for at least this long. Units: milliseconds.

B.11: Status, Events, and Faults
Amplifier status and fault information can be accessed using the following methods and properties
of CMLCOMLib.AmpObj.

B.11.1: Amplifier Status Register Methods
These methods read the amplifier’s status registers (CML_EVENT_STATUS).
Method ReadEventStatus (eventStatus As CML_EVENT_STATUS)
Read amplifier's event status register. This is the main internal register, used to describe the amplifier’s current state.
Method ReadEventSticky (eventSticky As CML_EVENT_STATUS)
Reads the amplifier's 'sticky' event status register, which is a copy of the amplifier’s event status register. The bits of this
register are set normally, but only cleared when the register is read (i.e., the bits are 'sticky'). For a description of the
event status register, see B.11.2: Amplifier Event Status Register Values (p32).
Method ReadEventLatch (eventLatch As CML_EVENT_STATUS)
Reads the latched version of the amplifier’s event status register, which is a copy of the amplifier’s event status register.
The bits of this register are set normally, but only cleared in response to an amplifier reset or power cycle or by calling
ClearFaults (i.e., the bits are latched). For a description of the event status register,
see B.11.2: Amplifier Event Status Register Values (p32).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

32 Copley Controls Corp.

B.11.2: Amplifier Event Status Register Values
Bits in the Event Status register describes various amplifier status conditions, as described below.
Value (Const) Bit Description
EVENT_STATUS_SHORT_CIRCUIT = 1 0 Amplifier short circuit.
EVENT_STATUS_AMPLIFIER_TEMPERATURE = 2 1 Amplifier over temperature.
EVENT_STATUS_OVER_VOLTAGE = 4 2 Amplifier over voltage.
EVENT_STATUS_UNDER_VOLTAGE = 8 3 Amplifier under voltage.
EVENT_STATUS_MOTOR_TEMPERATURE = 16 4 Motor over temperature.
EVENT_STATUS_ENCODER_POWER = 32 5 Encoder power error.
EVENT_STATUS_PHASE_ERROR = 64 6 Phasing error.
EVENT_STATUS_CURRENT_LIMIT = 128 7 Current limited.
EVENT_STATUS_VOLTAGE_LIMIT = 256 8 Voltage limited.
EVENT_STATUS_POSITIVE_LIMIT = 512 9 Positive limit is active.
EVENT_STATUS_NEGATIVE_LIMIT = 1024 10 Negative limit is active.
EVENT_STATUS_DISABLE_INPUT = 2048 11 Hardware disabled (enable pin not set).
EVENT_STATUS_SOFTWARE_DISABLE = 4096 12 Disabled due to software request.
EVENT_STATUS_STOP = 8192 13 Try to stop motor (after disable, before brake).
EVENT_STATUS_BRAKE = 16384 14 Brake actuated.
EVENT_STATUS_PWM_DISABLE = 32768 15 PWM outputs disabled.
EVENT_STATUS_SOFTWARE_LIMIT_POSITIVE
= 65536

16 Positive software limit reached.

EVENT_STATUS_SOFTWARE_LIMIT_NEGATIVE
=131072

17 Negative software limit reached.

EVENT_STATUS_TRACKING_ERROR = 262144 18 Tracking error.
EVENT_STATUS_TRACKING_WARNING = 524288 19 Tracking warning.
EVENT_STATUS_RESET = 1048576 20 Amplifier has been reset.
EVENT_STATUS_POSITON_WRAP = 2097152 21 Encoder position wrapped (rotary) or hit limit (linear).
EVENT_STATUS_FAULT = 4194304 22 Latching fault in effect.
EVENT_STATUS_VELOCITY_LIMIT =8388608 23 Velocity is at limit.
EVENT_STATUS_ACCELERATION_LIMIT = 16777216 24 Acceleration is at limit.
EVENT_STATUS_TRACKING_WINDOW = 33554432 25 Not in tracking window if set.
EVENT_STATUS_HOME = 67108864 26 Home switch is active.
EVENT_STATUS_MOVING = 134217728 27 Trajectory generator active OR not yet settled.
EVENT_STATUS_VELOCITY_WIN = 268435456 28 Velocity error outside of velocity window when set.
EVENT_STATUS_PHASE_INIT = 536870912 29 Set when using algorithmic phase initialize mode and the

phase is not initialized.
30-
31

Undefined

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 33

B.11.3: Amplifier Event Register Methods
The following member of CMLCOMLib.AmpObj is used to read the amplifier’s event register.
Method ReadEventMask (eventMask As CML_AMP_EVENT)
Reads the current state of the amplifier’s event register. The event mask is a bit-mapped variable that describes the
state of the amplifier. The contents of this variable are built up from several different amplifier status words. For a
description of masking, see G.1: Masking (p. 67). Event values are described below.

B.11.4: Amplifier Event Register Values
Bits in the Amp Event register describes various amplifier states, as described below.
Value (Const) Bit Description
AMPEVENT_MOVE_DONE = 1 0 Set when a move is finished and the amplifier has settled in

to position at the end of the move. Cleared when a new
move is started.

AMPEVENT_TRAJECTORY_DONE = 2 1 Set when the trajectory generator finishes a move. The
motor may not have settled into position at this point.
Cleared when a new move is started.

AMPEVENT_NODEGUARD = 4 2 A node guarding (or heartbeat) error has occurred. This bit
is set when the error occurs, and is cleared by a call to the
function ClearNodeGuardEvent (p. 27).

AMPEVENT_START_ACKNOWLEDGE = 8 3 The Amplifier Object uses this event bit internally. It is set
when the amplifier acknowledges a new move start.

AMPEVENT_FAULT = 16 4 A latching amplifier fault has occurred. The specifics of what
caused the fault can be obtained by calling
ReadFaults (p. 34) and the fault conditions cleared by
calling ClearFaults (p. 34).

AMPEVENT_ERROR = 32 5 A non-latching amplifier error has occurred.
AMPEVENT_POSITION_WARNING = 64 6 The amplifier's absolute position error is greater then the

window set with PositionWarnWindow (p. 31).
AMPEVENT_POSITION_WINDOW = 128 7 The amplifier's absolute position error is greater then the

window set with SettlingWindow (p. 31).
AMPEVENT_VELOCITY_WINDOW = 256 8 The amplifier's absolute velocity error is greater then the

window set with VelocityWarnWindow (p. 31).
AMPEVENT_DISABLED = 512 9 The amplifier's outputs are disabled. The reason for the

disable can be determined by ReadEventStatus (p. 31),
which reads the event status word described in
B.11.2: Amplifier Event Status Register Values (p. 32).

AMPEVENT_POSITIVE_LIMIT = 1024 10 The positive limit switch is active.
AMPEVENT_NEGATIVE_LIMIT = 2048 11 The negative limit switch is active.
AMPEVENT_SOFTWARE_LIMIT_POSITIVE
= 4096

12 The positive software limit is active.

AMPEVENT_SOFTWARE_LIMIT_NEGATIVE =
8192

13 The negative software limit is active.

AMPEVENT_QUICKSTOP = 16384 14 The amplifier is presently performing a quick stop sequence.
AMPEVENT_ABORT = 32768 15 The last profile was aborted without finishing
AMPEVENT_SOFTDISABLE = 65536 16 The amplifier is software disabled.
Undefined 17-30
AMPEVENT_NOT_INITIALIZED = 2147483648 31 This amplifier's event mask has not yet been initialized

(internal use only). The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

34 Copley Controls Corp.

B.11.5: Amplifier Faults Methods and Properties
These methods and properties, members of CMLCOMLib.AmpObj, are associated with amplifier
faults.
Property FaultMask As CML_AMP_FAULTS
Amplifier’s fault mask. Fault mask identifies which conditions will be treated as latching faults by the amplifier. See
Amplifier Fault Values (p. 34) for a list of faults. See G.1: Masking (p. 67) for an overview of the masking technique.
Method ReadFaults (faults As CML_AMP_FAULT)
Gets any active latched faults. See Amplifier Fault Values (p. 34) for a list of faults.
Method ClearFaults()
Clears amplifier faults. This function can be used to clear any latching faults on the amplifier. Faults are identified as
latching using FaultMask (p. 34).
ClearFaults also clears tracking error conditions. Once a latched fault is detected in the amplifier, the amplifier will be
disabled until the fault condition has been cleared. See Amplifier Fault Values (p. 34) for a list of faults.

B.11.6: Amplifier Fault Values
Bits in the Amp Faults register describes various amplifier faults, as described below.
Value (Const) Bit Description
FAULT_DATAFLASH = 1 0 Fatal hardware error: the flash data is corrupt.
FAULT_ADCOFFSET = 2 1 Fatal hardware error: an A/D offset error has occurred.
FAULT_SHORT_CIRCUIT = 4 2 The amplifier detected a short circuit condition.
FAULT_AMP_TEMPERATURE = 8 3 The amplifier is over temperature.
FAULT_MOTOR_TEMPERATURE = 16 4 A motor temperature error was detected.
FAULT_OVER_VOLTAGE = 32 5 The amplifier bus voltage is over the acceptable limit.
FAULT_UNDER_VOLTAGE = 64 6 The amplifier bus voltage is below the acceptable limit.
FAULT_ENCODER_POWER = 128 7 Over current condition detected on output of the

internal +5 Vdc supply used to power the feedback.
Resolver or analog encoder not connected or levels
out of tolerance.

FAULT_PHASE_ERROR = 256 8 Amplifier phasing error.
FAULT_TRACKING_ERROR = 512 9 Tracking error, the position error is too large.
FAULT_I2T_LIMIT_ERROR = 1024 10 Current is limited by the I2T algorithm.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 35

B.12: Amplifier Digital Inputs/Outputs
Amplifier digital inputs/outputs are managed by these CMLCOMLib.AmpObj properties/methods.

B.12.1: Input Pin Methods
Each of the amplifier’s digital inputs can be configured to perform an action. Note that one input
can perform the same action as another (for instance, two hardware disable inputs). The methods
below, members of CMLCOMLib.AmpObj, relate to the states and configuration of the inputs.
Property Inputs As Integer
Read-only. Gets the present hi/low states of the programmable inputs after debounce. The inputs are returned one per
bit. The value of IN1 is returned in bit 0 (1 if high, 0 if low), IN2 in bit 1, etc.
Method ReadInputDebouce(input As Integer, time As Long)
Reads the debounce time for the specified input. This time specifies how long an input must remain stable at a new state
before the amplifier recognizes the state.
Parameters:
input: The input to configure. Inputs are numbered starting from 0. Check amplifier data sheet for the number

of inputs available.
time: The debounce time assigned to this input in milliseconds.
Method WriteInputDebounce(input As Integer, time As Long)
Writes the debounce time for the specified input. This time specifies how long an input must remain stable at a new state
before the amplifier recognizes the state.
Parameters:
input: The input to configure. Inputs are numbered starting from 0. Check amplifier datasheet for the number of

inputs available.
time: The debounce time assigned to this input in milliseconds.
Property IoPullup As Integer
State of the pull up/down resistors. Some Copley Controls amplifiers (see amplifier data sheet) have pull up/down
resistors connected to a group of inputs. Each bit in the IoPullup property represents one pull up/down resistor; pull
up/down resistor 1 is returned in bit 0, pull up/down resistor 2 is return in bit 2, etc. When the bit is set, the inputs
connected to the resistor are pulled up to the high state when they are not connected. When the bit is cleared, the inputs
are pulled down to a low state when they are not connected.
Method ReadInputConfig(input As Integer, config As CML_INPUT_PIN_CONFIG)
Gets the input configuration for the specified input. Each of the amplifier’s inputs can be configured to perform some
function.
Parameters:
input: Input to read. Inputs are numbered starting from 0. Check amplifier datasheet for number of inputs

available.
config Function assigned to the input.

See B.12.2: Input Pin Configuration Settings (p. 36).
Method WriteInputConfig(input As Integer, config As CML_INPUT_PIN_CONFIG)
Sets the input configuration for the specified input. Each of the amplifier’s inputs can be configured to perform some
function. WriteInputConfig configures the specified input to perform the specified function.
Parameters:
input: Input to read. Inputs are numbered starting from 0. Check amplifier datasheet for number of inputs

available.
config: Function assigned to the input.

See B.12.2: Input Pin Configuration Settings (p. 36).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

36 Copley Controls Corp.

B.12.2: Input Pin Configuration Settings
The following values describe input pin configurations.
They can be read with ReadInputConfig (p. 35) and changed with WriteInputConfig (p. 35).
Value (Constant) Description
INPUT_CONFIGURATION_NONE = 0 No function assigned to the input.
INPUT_CONFIGURATION_RESET_RISING = 2 Reset the amplifier on the rising edge of the input.
INPUT_CONFIGURATION_RESET_FALLING = 3 Reset the amplifier on the falling edge of the input.
INPUT_CONFIGURATION_POSITIVE_LIMIT_HIGH = 4 Positive limit switch; active high.
INPUT_CONFIGURATION_POSITIVE_LIMIT_LOW = 5 Positive limit switch; active low.
INPUT_CONFIGURATION_NEGATIVE_LIMIT_HIGH = 6 Negative limit switch, active high.
INPUT_CONFIGURATION_NEGATIVE_LIMIT_LOW = 7 Negative limit switch, active low.
INPUT_CONFIGURATION_MOTOR_TEMPERATURE_HIGH
= 8

Motor temperature sensor; active high.

INPUT_CONFIGURATION_MOTOR_TEMPERATURE_LOW
= 9

Motor temperature sensor, active low.

INPUT_CONFIGURATION_CLEAR_FAULTS_HIGH = 10 Clear faults on the rising edge; disable while high.
INPUT_CONFIGURATION_CLEAR_FAULTS_LOW = 11 Clear faults on the falling edge, disable while low.
INPUT_CONFIGURATION_RESET_DISABLE_RISING = 12 Reset on rising edge; disable while high.
INPUT_CONFIGURATION_RESET_DISABLE_FALLING = 13 Reset on falling edge; disable while low.
INPUT_CONFIGURATION_HOME_HIGH = 14 Home switch; active high.
INPUT_CONFIGURATION_HOME_LOW = 15 Home switch; active low.
INPUT_CONFIGURATION_DISABLE_HIGH = 16 Amplifier disable; active high.
INPUT_CONFIGURATION_DISABLE_LOW = 17 Amplifier disable; active low.
INPUT_CONFIGURATION_PWM_SYNCH = 19 PWM synchronization. Only for high speed inputs (see

data sheet).
INPUT_CONFIGURATION_MOTION_ABORT_HIGH = 20 Abort move in progress; keep the amplifier enabled and

servoing; active high.
INPUT_CONFIGURATION_MOTION_ABORT_LOW = 21 Abort move in progress; keep the amplifier enabled and

servoing; active low.
INPUT_CONFIGURATION_HIGH_RES_ANALOG_DIVIDE_HIGH
= 22

A high input causes the firmware to divide the level of the
analog input signal by 8.

INPUT_CONFIGURATION_HIGH_RES_ANALOG_DIVIDE_LOW
= 23

A low input causes the firmware to divide the level of the
analog input signal by 8.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 37

B.12.3: Output Pin Methods
Each of the amplifier’s digital outputs can be configured to go active/inactive under different
conditions. The methods and properties below, members of CMLCOMLib.AmpObj, relate to the
states and configuration of the outputs.
Property Outputs As Integer
Reads or writes the present states (active/inactive) of the programmable outputs.
When this property is read, the current active/inactive state of all outputs is returned. Each output is represented by one
bit in the returned value; bit 0 for output 1, bit 1 for output 2, etc.
When this property is written, it is used to control the active/inactive state of any outputs that are configured to operate in
manual mode. Writing a 1 to a bit causes the corresponding output to become active; writing a 0 causes the output to
become inactive. Bits corresponding to outputs that are not configured in manual mode are ignored.

Method ReadOutputConfig (output As Short, config As CML_OUTPUT_PIN_CONFIG, mask As
Long)
Reads the configuration for the specified output.
NOTE: See the updated version of this method, ReadOutputConfigExt (p. 37).

Method ReadOutputConfigExt (output As Short, config As CML_OUTPUT_PIN_CONFIG,
param1 As Integer, param2 As Long)
Reads the configuration for the specified output. For details, see WriteOutputConfigExt (p. 37).

Method WriteOutputConfig (output As Short, config As CML_OUTPUT_PIN_CONFIG, mask As
Long)
Sets the configuration for the specified output. Each of the amplifier’s outputs can be configured to event status tracking
mode or manual mode, as specified by the config parameter.
Parameters:
output: The output to configure. Outputs are numbered starting from 0. Check amplifier datasheet for the

number of outputs available.
config: The function to be assigned to this output.

See B.12.5: Output Pin Configuration Values (p. 38).
mask: A 32-bit mask used to select which status bits the output should track. See G.1: Masking (p. 67). If the

output is configured for manual mode (config=2 or 258), then the mask is not used and does not need to
be specified.

NOTE: See the updated version of this method, WriteOutputConfigExt (p. 37).

Method WriteOutputConfigExt (output As Short, config As CML_OUTPUT_PIN_CONFIG,
param1 As Integer, param2 As Integer)
Sets the configuration for the specified output. Each of the amplifier’s outputs can be configured to event status tracking
mode, position triggered mode, or manual mode, as specified by the config parameter.
Parameters:
output: The output to configure. Outputs are numbered starting from 0. Check amplifier datasheet for the

number of outputs available.
config: The function to be assigned to this output.

See B.12.5: Output Pin Configuration Values (p. 38).
param1: The function of param1 differs depending on the output pin configuration.

See B.12.5: Output Pin Configuration Values (p. 38).
param2: The function of param2 differs depending on the output pin configuration.

See B.12.5: Output Pin Configuration Values (p. 38)

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

38 Copley Controls Corp.

B.12.5: Output Pin Configuration Values
Each value described below specifies an output pin function, and whether the output will be active
high or active low. These values are set and read using the methods described in B.12.3: Output
Pin Methods (p. 37).
OUTPUT_CONFIGURATION_EVENT_STATUS_LOW = 0
The output follows the amplifier's event status register and is active low. Parameters:
param1 A 32-bit mask used to select which status bits the output should track.
param2 Has no meaning. Set to zero.
OUTPUT_CONFIGURATION_ EVENT_STATUS_HIGH = 256
The output follows the amplifier's event status register and is active high. Parameters:
param1 A 32-bit mask used to select which status bits the output should track.
param2 Has no meaning. Set to zero.
OUTPUT_CONFIGURATION_EVENT_LATCH_LOW = 1
The output follows the latched version of the amplifier's event status register and is active low. Parameters:
param1 A 32-bit mask used to select which status bits the output should track.
param2 Has no meaning. Set to zero.
OUTPUT_CONFIGURATION_EVENT_LATCH_HIGH = 257

The output follows the latched version of the amplifier's event status register and is active high. Parameters:
param1 A 32-bit mask used to select which status bits the output should track.
param2 Has no meaning. Set to zero.
OUTPUT_CONFIGURATION_MANUAL_LOW = 2
The output is manually controlled using Outputs (p. 37), and is active low. This method does not use parameters; set all
parameters to zero.
OUTPUT_CONFIGURATION_MANUAL_HIGH = 258
The output is manually controlled using Outputs (p. 37), and is active high. This method does not use parameters; set all
parameters to zero.
OUTPUT_CONFIGURATION_TRAJECTORY_STATUS_LOW = 3
The output pin follows bits in the amplifier’s trajectory status register and is active low. Parameters:
param1 A 32-bit mask used to select which status bits the output should track.
param2 Has no meaning. Set to zero.
OUTPUT_CONFIGURATION_ TRAJECTORY_STATUS_HIGH = 259
The output pin follows bits in the amplifier’s trajectory status register and is active high. Parameters:
param1 A 32-bit mask used to select which status bits the output should track.
param2 Has no meaning. Set to zero.
OUTPUT_CONFIGURATION_POSITION_WINDOW_LOW = 4
The output goes active low if the actual motor position is greater than param1 and less than param2.
param1 Low edge of position trigger window. Units: Counts.
param2 High edge of position trigger window. Units: Counts.
OUTPUT_CONFIGURATION_POSITION_WINDOW_HIGH = 260

The output goes active high if the actual motor position is greater than param1 and less than param2.
param1 Low edge of position trigger window. Units: Counts.
param2 High edge of position trigger window. Units: Counts.

Continued…
The

 IC
R Smart

Actu
ato

r w
hic

h u
se

s t
his

 so
ftw

are
 is

 a
DISCONTIN

UED Tolo
mati

c P
rod

uc
t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 39

…Output Pin Configuration Values, continued:
OUTPUT_CONFIGURATION_MOTION_POSITIVE_LOW = 5
The output goes active low when the motor actual position crosses in the low-to-high direction through the point specified
in param1. The pin stays active for amount of time specified in param2.
param1 Trigger position. Units: Counts.
param2 Output active time. Units: milliseconds.
OUTPUT_CONFIGURATION_MOTION_POSITIVE_HIGH = 261
The output goes active high when the motor actual position crosses in the low-to-high direction through the point
specified in param1. The pin stays active for amount of time specified in param2.
param1 Trigger position. Units: Counts.
param2 Output active time. Units: milliseconds.
OUTPUT_CONFIGURATION_MOTION_NEGATIVE_LOW = 6
The output goes active low when the motor actual position crosses in the high-to-low direction through the point specified
in param1. The pin stays active for amount of time specified in param2.
param1 Trigger position. Units: Counts.
param2 Output active time. Units: milliseconds.
OUTPUT_CONFIGURATION_MOTION_NEGATIVE_HIGH = 262
The output goes active high when the motor actual position crosses in the high-to-low direction through the point
specified in param1. The pin stays active for amount of time specified in param2.
param1 Trigger position. Units: Counts.
param2 Output active time. Units: milliseconds.
OUTPUT_CONFIGURATION_TRIG_AT_POSITION_LOW = 7
The output goes active low when the motor actual position crosses in any direction through the point specified in
param1. The pin stays active for amount of time specified in param2.
param1 Trigger position. Units: Counts.
param2 Output active time. Units: milliseconds.
OUTPUT_CONFIGURATION_TRIG_AT_POSITION_HIGH = 263
The output goes active high when the motor actual position crosses in any direction through the point specified in
param1. The pin stays active for amount of time specified in param2.
param1 Trigger position. Units: Counts.
param2 Output active time. Units: milliseconds.
OUTPUT_CONFIGURATION_PWM_SYNCH = 512
PWM Synchronization. Note: Valid only on Output 0. This method does not use parameters; set all parameters to zero.

B.13: Amplifier Enable/Disable
The following methods and properties of the AmpObj object are used to enable and disable the
amplifier, and report on its state.
Property IsHardwareEnabled As Boolean
Read-only. Returns True if amplifier’s Enable input is currently active. Amplifier outputs may still be disabled due to error
condition.
Property IsSoftwareEnabled As Boolean
Read-only. Returns True if amplifier is software enabled. Amplifier outputs may still be disabled due to error condition.
Property IsPWMEnabled
Read-only. Returns true if the amplifier's PWM outputs are currently enabled.
Method Enable()
 Software enables the amplifier.
Method Disable()
Software disables the amplifier.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

40 Copley Controls Corp.

B.14: Homing
B.14.1: Homing-Related Amplifier Object Methods and Properties
The following homing methods and properties are members of CMLCOMLib.AmpObj.
Method GoHome()
Executes a homing move using the values set in the HomeSettings object.
Property IsReferenced As Boolean
Read-only. Returns True if successfully referenced (homed). When amplifier is powered up (or after a reset), it does not
know the absolute position of the motor. After successful homing, the amplifier is considered referenced.
Property SoftPositionPosLimit As Double
Positive limit position. Any time the motors actual position is greater then this value, a positive software limit condition will
be in effect on the amplifier. Software limits are enabled after the amplifier is referenced, and disabled by setting the
positive limit equal to the negative limit.
Property SoftPositionNegLimit As Double
Negative limit position. Any time the motors actual position is less then this value, a negative software limit condition will
be in effect on the amplifier. Software limits are enabled after the amplifier is referenced, and disabled by setting the
positive limit equal to the negative limit.
Property HomeSettings As CMLCOMLib.HomeSettings
Contains the HomeSettings object. See Objects Contained by AmpObj (p. 12) and B.14.2: HomeSettings Object, below.

B.14.2: HomeSettings Object Properties
The following homing properties are members of CMLCOMLib.HomeSettings. An instance of this
object is obtained from the AmpObj.
Property HomeOffset As Double
The home offset value. After the home position is found as defined by the home method, this offset will be added to it
and the resulting position will be considered the zero position. User-defined units; see Units (p. 15).
Property HomeVelFast As Double
Velocity to use for fast moves during the home procedure. User-defined units/second; see Units (p. 15).
Property HomeVelSlow As Double
Velocity to use when seeking a sensor edge. User-defined units/second; see Units (p. 15).
Property HomeAccel As Double
Acceleration/deceleration value used for all homing procedure moves. User-defined units/second2; see Units (p. 15).

Property HomeCurrentLimit
Home current limit in hard stop mode, in which the amplifier drives the motor to the mechanical end of travel (hard stop).
End of travel is recognized when the amplifier outputs the HomeCurrent for the HomeDelay time. Units: 0.01A.
Property HomeDelay
Delay used for homing to a hard stop in hard stop mode. Units: milliseconds.
Property HomeMethod As CML_HOME_METHOD
Gets the method used for homing the amplifier. See Property HomingMethods (p. 41).

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 41

…HomeSettingsObject, continued
Property HomingMethods

Value (Const) Description
CHOME_NEGATIVE_LIMIT_OUTTO_INDEX = 1 Move into the negative limit switch, then back to the first

encoder index pulse beyond it. Index position is home.
CHOME_POSITIVE_LIMIT_OUTTO_INDEX = 2 Move into the positive limit switch, then back to the first

encoder index pulse beyond it. Index position is home.
CHOME_POSITIVE_HOME_OUTTO_INDEX = 3 Move to a positive home switch, then back to the first

encoder index outside the home region. Index position is
home.

CHOME_POSITIVE_HOME_INTO_INDEX = 4 Move to a positive home switch, and continue to the first
encoder index inside the home region. Index position is
home.

CHOME_NEGATIVE _HOME_OUTTO_INDEX = 5 Move to a negative home switch, then back to the first
encoder index outside the home region. Index position is
home.

CHOME_NEGATIVE _HOME_INTO_INDEX = 6 Move to a negative home switch, and continue to the first
encoder index inside the home region. Index position is
home.

CHOME_LOWER_HOME_OUTSIDE_INDEX_POSITIVE
= 7

Move to the lower side of a momentary home switch. Then
find the first encoder index pulse outside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be positive.

CHOME_LOWER_HOME_INSIDE_INDEX_POSITIVE = 8 Move to the lower side of a momentary home switch. Then
find the first encoder index pulse inside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be positive.

CHOME_UPPER_HOME_INSIDE_INDEX_POSITIVE = 9 Move to the upper side of a momentary home switch. Then
find the first encoder index pulse inside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be positive.

CHOME_UPPER_HOME_OUTSIDE_INDEX_POSITIVE
= 10

Move to the upper side of a momentary home switch. Then
find the first encoder index pulse outside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be positive.

CHOME_UPPER_HOME_OUTSIDE_INDEX_NEGATIVE
= 11

Move to the upper side of a momentary home switch. Then
find the first encoder index pulse outside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be negative.

CHOME_UPPER_HOME_INSIDE_INDEX_NEGATIVE = 12 Move to the upper side of a momentary home switch. Then
find the first encoder index pulse inside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be negative.

CHOME_LOWER_HOME_INSIDE_INDEX_NEGATIVE
= 13

Move to the lower side of a momentary home switch. Then
find the first encoder index pulse inside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be negative.

CHOME_LOWER_HOME_OUTSIDE_INDEX_NEGATIVE
= 14

Move to the lower side of a momentary home switch. Then
find the first encoder index pulse outside the home region. If
the home switch is not active when the home sequence
starts, then the initial move will be negative.

CHOME_NEGATIVE_LIMIT = 17 Move into the negative limit switch. The edge of the limit is
home.

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

42 Copley Controls Corp.

…Property HomingMethods, continued
CHOME_POSITIVE_LIMIT = 18 Move into the positive limit switch. The edge of the limit is

home.
CHOME _ POSITIVE_HOME = 19 Move to a positive home switch. The edge of the home

region is home.
CHOME_ NEGATIVE_HOME = 21 Move to a negative home switch. The edge of the home

region is home.
CHOME _LOWER_HOME_POSITIVE = 23 Move to the lower side of a momentary home switch. The

edge of the home region is home. If the home switch is not
active when the home sequence starts, then the initial move
will be positive.

CHOME _UPPER_HOME_POSITIVE = 25 Move to the upper side of a momentary home switch. The
edge of the home region is home. If the home switch is not
active when the home sequence starts, then the initial move
will be positive.

CHOME _UPPER_HOME_ NEGATIVE = 27 Move to the upper side of a momentary home switch. The
edge of the home region is home. If the home switch is not
active when the home sequence starts, then the initial move
will be negative.

CHOME _LOWER_HOME_ NEGATIVE = 29 Move to the lower side of a momentary home switch. The
edge of the home region is home. If the home switch is not
active when the home sequence starts, then the initial move
will be negative.

CHOME _INDEX_ NEGATIVE = 33 Move in the negative direction until the first encoder index
pulse is found. The index position is home.

CHOME _INDEX_POSITIVE = 34 Move in the positive direction until the first encoder index
pulse is found. The index position is home.

CHOME _NONE = 35 Set the current position to home.
CHOME_HARDSTOP_OUTSIDE_INDEX_NEG = 252 Home to a hard stop. Move in the negative direction until the

homing current has been reached. This current will be held
until the homing delay has expired. Then move away from
the hard stop until an index mark is located. The index
position is home.

CHOME_HARDSTOP_OUTSIDE_INDEX_POS = 253 Home to a hard stop. Move in the positive direction until the
homing current has been reached. This current will be held
until the homing delay has expired. Then move away from
the hard stop until an index mark is located. The index
position is home.

CHOME_HARDSTOP_NEG = 254 Home to a hard stop. The motor will start running in the
negative direction until the homing current has been reached.
It will hold this current until the homing delay has expired.
The actual position after that delay is home.

CHOME_HARDSTOP_POS = 255 Home to a hard stop. The motor will start running in the
positive direction until the homing current has been reached.
It will hold this current until the homing delay has expired.
The actual position after that delay is home.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 43

B.15: Quick Stop
Quick stops are controlled using these methods and properties of the CMLCOMLib.AmpObj object.

B.15.1: Quick Stop
The following properties and methods, members of CMLCOMLib.AmpObj, are used to configure
the amplifier’s quick stop action.
Property QuickStopMode As CML_QUICK_STOP_MODE
Quick stop mode. When the QuickStop command is issued, the amplifier stops the move in progress using the method
defined by QuickStopMode.
Quick Stop Modes (CML_QUICK_STOP)
The quick stop modes chosen with QuickStopMode are described below.
Value (Const) Description
QSTOP_DISABLE = 0 Disable the amplifier immediately.

QSTOP_DECEL = 1 Slow down using the profile deceleration (p. 44), and then disable.

QSTOP_QUICKSTOP = 2 Slow down using the quick stop deceleration (p. 43) then disable.
QSTOP_ABRUPT = 3 Slow down with unlimited deceleration then disable.

QSTOP_DECEL_HOLD = 5 Slow down using the profile deceleration (p. 44), and then hold.
Amplifier must be disabled and re-enabled before motion is allowed.

QSTOP_QUICKSTOP_HOLD = 6 Slow down using the quick stop deceleration (p. 43) then hold.
Amplifier must be disabled and re-enabled before motion is allowed.

QSTOP_ABRUPT_HOLD = 7 Slow down with unlimited deceleration then hold. Amplifier must be
disabled and re-enabled before motion is allowed.

Property QuickStopDec As Double
Deceleration rate that the motor will use during a quick stop. User-defined units/second2; see Units (p. 15).

Method QuickStop()
Performs quick stop on axis using the QuickStopMode (p. 43) programmed in the amplifier.

B.15.2: Halt
The following properties and methods, members of CMLCOMLib.AmpObj, are used to configure
the amplifier’s halt action.
Property HaltMode As CML_HALT_MODE
Halt mode. When the amplifier's HaltMove command is issued, the amplifier stops the move in progress using the
method defined by HaltMode. Halt modes are described below.
Halt Modes (CML_HALT_MODE)
The halt modes chosen with HaltMode are described below.
Value (Const) Description
HALT_DISABLE = 0 Disable the amplifier immediately.

HALT_DECEL = 1 Slow down using the profile deceleration (p. 44).

HALT_QUICKSTOP = 2 Slow down using the quick stop deceleration (p. 43).
HALT_ABRUPT = 3 Slow down with unlimited deceleration.
Method HaltMove()
Halts current move using the HaltMode (p. 43) programmed in the amplifier. Halt modes are described above.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

44 Copley Controls Corp.

B.16: Point-to-Point Moves
B.16.1: Point-to-Point Move-Related Amplifier Methods and Properties
The following methods and properties, members of CMLCOMLib.AmpObj, can be used to control
point-to-point moves.
Method MoveRel(distance As Double)
Performs a relative point-to-point move of the specified distance. Parameters:
distance: Trajectory distance. User-defined units; see Units (p. 15).
Method MoveAbs(position As Double)
Performs an absolute point-to-point move to the specified position. Parameters:
position: Trajectory target position. User-defined units; see Units (p. 15).
Property TargetPos As Double
Read-only. Reads the profile target position. User-defined units; see Units (p. 15).
Method WaitMoveDone(timeout As Long)
Waits for current move to finish. This method is blocking. When called, it will not return until either the event occurs, or
the timeout expires. If a timeout occurs, CMO will report the timeout in the form of a COM compatible error object.
Parameters:
timeout: The timeout for the wait. If <0, then wait indefinitely. Units: milliseconds.
Property TrajectoryAcc As Double
Read-only. Gets the instantaneous commanded acceleration passed out of the trajectory generator. This acceleration is
used by the position loop to calculate its acceleration feed forward term. User-defined units/second2; see Units (p. 15).
Property TrajectoryVel As Double
Read-only. Gets the instantaneous commanded velocity passed out of the trajectory generator. This velocity is used by
the position loop to calculate its velocity feed forward term. User-defined units/second; see Units (p. 15).
Property ProfileSettings As CMLCOMLib. ProfileSettings
Contains the ProfileSettings object. See Objects Contained by AmpObj (p. 12) and B.16.2: ProfileSettings Object, below.

B.16.2: ProfileSettings Object
The following point-to-point move properties are members of CMLCOMLib.ProfileSettings. An
instance of this object is obtained from the AmpObj.
Property ProfileType As CML_PROFILE_TYPE
Motion profile type from the in CML_PROFILE_TYPE Profile Types (p. 44).
CML_PROFILE_TYPE Profile Types
These are the profile types that can be accessed using the ProfileType property.
Value (Const) Description
PROFILE_VELOCITY= -1 Velocity profile. In this profile mode the velocity, acceleration and

deceleration values are used. The position value is also used, but it only
defines the direction of motion (positive if position is >= 0, negative if
position is < 0).

 Note: The PROFILE_VELOCITY type should be used only with the method
MoveAbs (p. 44).

PROFILE_TRAP = 0 Trapezoidal profile. In this profile mode a position, velocity, acceleration,
and deceleration may be specified.

PROFILE_SCURVE =3 Jerk limited (S-curve) profile. In this mode, position, velocity, acceleration,
and jerk (rate of change of acceleration) may be specified.

Property ProfileAcc As Double
The profile acceleration value that the motor uses when starting the move. User-defined units/second2; see Units (p. 15).

Property ProfileDecel As Double
The profile deceleration value that the motor uses when ending the move. This property is not used for S-curve profiles.
User-defined units/second2; see Units (p. 15).

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 45

…ProfileSettings Object, continued
Property ProfileJerk As Double
The jerk limit used with S-curve profiles. Jerk is rate of change of acceleration. Only used with S-curve profiles. User-
defined units/second3; see Units (p. 15).

Property ProfileVel As Double
The profile velocity value that the motor attempts to reach during the move. User-defined units/second; see Units (p. 15).
Property Profile Abort
Deceleration value to use when aborting a running trajectory. User-defined units/second2; see Units (p. 15).

B.17: Amplifier Events
The following methods, members of CMLCOMLib.AmpObj, are used to monitor amplifier events
and amplifier inputs.
 Method CreateEvent (mask As CML_AMP_EVENT, condition As CML_EVENT_CONDITION) As
EventObj
Creates an instance of EventObj, using specified parameters to monitor amplifier events. See The Event Object (p. 57).
Parameters:
mask: The bit-mapped value that indicates which events are to be monitored. See Amplifier Event Register

Values (p. 33).
condition: The trigger condition for the events that will result in the event callback method being called (e.g. all

events in the mask). See Event Conditions (p. 58).
eventObject: The EventObj instance created by this method.
Method CreateInputEvent (mask As Integer, condition As CML_EVENT_CONDITION) As EventObj
Creates instance of EventObj that monitors the amplifier’s digital inputs and sets it up using the specified parameters.
Parameters:
mask: A bit-mapped value that indicates which digital input pin is to be monitored. Each corresponds to one

input pin; bit 0 for input 0, bit 1 for input 1, etc.
condition: The trigger condition for the events that will result in the event callback method being called (e.g. all

events in the mask). See Event Conditions (p. 58).
eventObject: The EventObj instance created by this method.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

46 Copley Controls Corp.

B.18: Amplifier Trace Methods and Properties
The following methods are used to configure and monitor the amplifier trace function.

B.18.1: Amplifier Trace Methods
The following amplifier trace methods are members of CMLCOMLib.AmpObj.
Method ReadTraceStatus(status As CML_AMP_TRACE_STATUS, samplesCollected As Integer,
maxSamples As Integer)
Read the status of the amplifier's trace system. Parameters:
status: Information on whether the trace is currently running is returned in this parameter.

Value Description
TRACE_STATUS_RUNNING = 1 Trace is currently collecting data.
TRACE_STATUS_TRIGGERED = 2 Trace has been triggered.
TRACE_STATUS_SAMPLED = 4 Trace is currently in sampled mode.
TRACE_STATUS_NODELAY = 8 Trace is configured to ignore initial delays.

samplesCollected: The total number of trace samples collected is returned here.
maxSamples: The maximum number of trace samples that will fit in the internal buffer is returned here. This value

will change depending on how many trace channels are active and which variables are selected.
Method ReadTraceRefPeriod(refPeriod As Long)
Get the reference period used with the amplifier’s trace mechanism. The amplifier internally samples its trace channels at
integer multiples of this time. For example, if the amplifier's reference period is 100,000 nanoseconds, then setting the trace
period to 12 would indicate that the amplifier should sample its internal variables every 1.2 milliseconds. Parameters:
refPeriod: The reference period is returned here. Units: refPeriod.
Method WriteTracePeriod(tracePeriod As Integer)
Set the period of time between trace samples. When the trace system is running, the amplifier will sample and store its
internal variables this often. Note that this parameter specifies time in units of the amplifier's reference period. See
ReadTraceRefPeriod for more information. Parameters:
tracePeriod: The trace period to be set. Units: refPeriod.
Method ReadTracePeriod(tracePeriod As Integer)
Get the period of time between trace samples. When the trace system is running, the amplifier will sample and store its
internal variables this often. Note that this parameter specifies time in units of the amplifier's reference period. See
ReadTraceRefPeriod for more information. Parameters:
tracePeriod: The trace period is returned here. Units: refPeriod.
Method ReadTraceTrigger(type As CML_AMP_TRACE_TRIGGER, channel As Integer, level As Long,
delay As Integer)
Get the current configuration of the amplifier's trace trigger. See B.18.2: Amplifier Trace Trigger Values (p. 48) for more
information about the trigger. Parameters:
type: The type of trigger to be used.
channel: Which trace channel to trigger on.
level: The trigger level.
delay: The delay between the occurrence of the trigger and the start of data collection.
Method WriteTraceTrigger(type As CML_AMP_TRACE_TRIGGER, channel As Integer, level As Long,
delay As Integer)
Configure the amplifier's trace trigger. The trigger resembles the trigger on an oscilloscope. It allows an event to be
specified which will cause the trace subsystem to start collecting data. Most trigger types watch one of the trace channels
and constantly compare its value to a level. The type of comparison made will depend on the type of trigger. For example,
the trace can be triggered on the rising edge of a signal, on the falling edge, etc. The trigger also allows a delay value to be
specified. Trace data will start to be collected N trace periods after the trigger, where N is the delay value. The delay can
also be negative, in which case the data will start to be collected before the trigger event. Parameters:
type: The trigger type.
channel: The trace channel to watch. This parameter defaults to 0 if not specified.
level: The trigger level. This parameter defaults to 0 if not specified.
delay: The trigger delay in trace sample periods. Defaults to 0 if not specified.

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 47

…Amplifier Trace Methods, continued
Method ReadTraceMaxChannel(maxChannels As Integer)
Return the maximum number of trace channels supported by the amplifier. Parameters:
maxChannels: The number of channels is returned here.
Method ReadTraceChannel(channel As Integer, traceVar CML_AMP_TRACE_VAR)
Get the amplifier variable current selected on one of the trace channels.
Parameters:
channel: The trace channel to get (zero based).
traceVar: The trace variable assigned to this channel will be returned here.
Method WriteTraceChannel(channel As Integer, traceVar CML_AMP_TRACE_VAR)
Select an amplifier trace variable to be sampled.
Parameters:
channel: The trace channel that the variable will be assigned to (zero based).
traceVar: The trace variable to sample. See Amplifier Trace Channel Variables (p. 48).
Method TraceStart()
Start collecting trace data on the amplifier. The trace will automatically stop once the amplifier's internal trace buffer fills up.
Method TraceStop()
Stop collecting trace data on the amplifier.
Method ReadTraceData(traceDataArray VARIANT, dataCount As Long)
Upload any trace data captured in the amplifier. Trace data should only be uploaded when the traces are stopped.
Uploading data during data collection can cause corrupt data to be uploaded.
The trace data is returned as an array of 32-bit integer values. If there are N currently active trace channels, and M samples
of data have been collected, then a total of N x M integer values will be returned. In this case, the samples for channel n
(0 <= n < N) will be located at position n + m*N for 0 <= m < M.
Parameters:
traceDataArray: An array where the trace data will be returned.
dataCount: On entry to this call, this parameter must hold the maximum number of 32-bit integer values to upload.

On successful return this parameter will be filled with the total number of integers uploaded.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

48 Copley Controls Corp.

B.18.2: Amplifier Trace Trigger Values
The method WriteTraceTrigger (p. 46) can be used to configure the trace trigger by selecting one
of the values below. The method ReadTraceTrigger (p. 46) can be used to read the current trigger
value.
Value (Const) Description
TRACETRIG_NONE = 0 Trace trigger type none. The trace is triggered immediately on start.
TRACETRIG_ABOVE = 256 Trigger as soon as the value on the selected variable is above the trigger level.
TRACETRIG_BELOW = 512 Trigger as soon as the value on the selected variable is below the trigger level.
TRACETRIG_RISE = 768 Trigger when the value on the selected variable changes from below the trigger

level to above it.
TRACETRIG_FALL = 1024 Trigger when the value on the selected variable changes from above the trigger

level to below it.
TRACETRIG_BITSET = 1280 Treat the trigger level as a bit mask which selects one or more bits on the

selected trace variable. The trigger occurs as soon as any of the selected bits
are set.

TRACETRIG_BITCLR = 1536 Treat the trigger level as a bit mask which selects one or more bits on the
selected trace variable. The trigger occurs as soon as any of the selected bits
are clear.

TRACETRIG_CHANGE = 1792 Trigger any time the selected trace variable value changes.
TRACETRIG_EVENTSET = 2048 Treat the trigger level as a bit mask which selects one or more bits on the

amplifier's event status register. The trigger occurs as any of the selected bits
are set.

TRACETRIG_EVENTCLR = 2304 Treat the trigger level as a bit mask which selects one or more bits on the
amplifier's event status register. The trigger occurs as any of the selected bits
are clear.

TRACETRIG_FGEN_CYCLE = 2560 Trigger at the start of the next function generator cycle. This trigger type is only
useful when running in function generator mode.

TRACETRIG_NODELAY = 16384 If this bit is set, then the trigger is allowed to occur even if the trace setup delay
has not yet occurred.

TRACETRIG_SAMPLE = 32768 Only take a single sample for each trigger. Normally, the occurrence of the
trigger causes the trace to begin sampling data and stop when the trace buffer
is full.

B.18.3: Amplifier Trace Channel Variables
Following is the list of amplifier variables that can be monitored using the trace feature. A variable
can be assigned to a channel using method WriteTraceChannel (p. 47). A channel’s assigned
variable can be read using method ReadTraceChannel (p. 47).
Value (Const) Description
TRACEVAR_HIGH_VOLT = 6 High voltage bus. Units: 0.1 V.
TRACEVAR_TEMP = 37 Amplifier temperature. Units: degrees C.
TRACEVAR_ANALOG_REF = 5 Analog reference input. Units: mV.
TRACEVAR_ENC_SIN = 46 Analog encoder sine. Units: 0.1 mV.
TRACEVAR_ENC_COS = 47 Analog encoder cosine. Units: 0.1 mV.
TRACEVAR_PHASE = 36 Motor phase angle. Units: 0.1 degree.
TRACEVAR_HALLS = 40 Hall sensor state.
TRACEVAR_INPUTS = 48 Digital input pins (after debounce).
TRACEVAR_RAW_INPUTS = 33 Digital input pins (before debounce).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 49

TRACEVAR_EVENTS = 38 Event status register.
TRACEVAR_EVENTLATCH = 39 Latched version of event status register.
TRACEVAR_CRNT_A = 3 Actual current, current sensor A. Units: 0.01 A.
TRACEVAR_CRNT_B = 4 Actual current, current sensor B. Units: 0.01 A.
TRACEVAR_CRNT_CMD = 7 Commanded current (before limiting). Units: 0.01 A.
TRACEVAR_CRNT_LIM = 8 Commanded current (after limiting). Units: 0.01 A.
TRACEVAR_CRNT_CMD_D = 9 Commanded current, D axis. Units: 0.01 A.
TRACEVAR_CRNT_CMD_Q = 10 Commanded current, Q axis. Units: 0.01 A.
TRACEVAR_CRNT_ACT_D = 13 Actual current, calculated for D axis. Units: 0.01 A.
TRACEVAR_CRNT_ACT_Q = 14 Actual current, calculated for Q axis. Units: 0.01 A.
TRACEVAR_CRNT_ERR_D = 15 Current loop error, D axis. Units: 0.01 A.
TRACEVAR_CRNT_ERR_Q = 16 Current loop error, Q axis. Units: 0.01 A.
TRACEVAR_VOLT_D = 19 Current loop output voltage, D axis. Units: 0.1 V.
TRACEVAR_VOLT_Q = 20 Current loop output voltage, Q axis. Units: 0.1 V.
TRACEVAR_VEL_MTR = 23 Motor velocity filtered. Units: 0.1 encoder counts / second.
TRACEVAR_VEL_RAW = 50 Motor velocity, unfiltered. Units: 0.1 encoder counts / second.
TRACEVAR_VEL_LOAD = 43 Load encoder velocity. Units: 0.1 encoder counts / second.
TRACEVAR_VLOOP_CMD = 24 Velocity loop commanded velocity (before limiting). Units: 0.1 encoder counts /

second.
TRACEVAR_VLOOP_LIM = 25 Velocity loop commanded velocity (after limiting). Units: 0.1 encoder counts /

second.
TRACEVAR_VLOOP_ERR = 26 Velocity loop error. Units: 0.1 encoder counts / second.
TRACEVAR_LOAD_POS = 28 Load encoder position. Units: encoder counts.
TRACEVAR_MTR_POS = 31 Motor encoder position. Units: encoder counts.
TRACEVAR_POS_ERR = 30 Position error. Units: encoder counts.
TRACEVAR_CMD_POS = 29 Commanded position from trajectory generator. Units: encoder counts.
TRACEVAR_CMD_VEL = 44 Commanded velocity from trajectory generator.

Units: 0.1 encoder counts / second.
TRACEVAR_CMD_ACC = 45 Commanded acceleration from trajectory generator.

Units: 10 encoder counts / second / second.
TRACEVAR_DEST_POS = 49 Destination position. Units: encoder counts.

B.19: Other Methods and Properties
The following members of CMLCOMLib.AmpObj relate to various amplifier functions.
Property CountsPerUnit As Double
Adjustable number of encoder counts/user distance unit. The default value is 1.0 (user distance units are in encoder
counts). Also controls velocity, acceleration, and jerk units. These units are always based on a time interval of seconds.
Method Reset()
Resets the Amplifier Object. It resets the amplifier and re-initializes the Amplifier Object.
Property AmpTemp As Integer
Read-only. Get the current amplifier temperature. Units: degrees C.
Property AmpMode As CML_AMP_MODE
Read-only. The currently active amplifier mode of operation. See Modes of Operation for CML_AMP_MODE (p. 50).

Continued…
The

 IC
R Smart

Actu
ato

r w
hic

h u
se

s t
his

 so
ftw

are
 is

 a
DISCONTIN

UED Tolo
mati

c P
rod

uc
t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

50 Copley Controls Corp.

…Other Methods and Properties, continued
Property AmpModeWrite As CML_AMP_MODE
Change the amplifier’s mode of operation by writing one of the values listed below.
Modes of Operation for CML_AMP_MODE
Value (Const) Description
AMPMODE_SERVO_CAN_PROFILE =
7681

A true CANopen position mode. The CANopen network sends move commands
to the amplifier, and the amplifier uses its internal trajectory generator to perform
the moves. Conforms to the CANopen Device Profile for Motion Control (DSP-
402) profile position mode.

AMPMODE_SERVO_CAN_VELOCITY =
7683

In this mode the CANopen network commands target velocity values to the
amplifier. The amplifier uses its programmed acceleration and deceleration
values to ramp the velocity up/down to the target. Note that support for profile
velocity mode was added in amplifier firmware version 3.06.

AMPMODE_SERVO_CAN_TORQUE =
7684

In this mode the CAN network sends target torque values to the amplifier. When
the amplifier is enabled, or the torque command is changed, the motor torque
ramps to the new value at the rate programmed in the property
TorqueSlope (p. 27). When the amplifier is halted, the torque ramps down at the
same rate.
When using Profile Torque mode, the property HaltMode (p. 43) can be set to any
mode except HALT_DISABLE, because HALT_DISABLE will disable the amplifier
with no torque ramp.
If the torque target value is changed while the amplifier is enabled, the torque will
ramp to the new target.
The units for torque target, demand, and actual are per thousand of the
motor's rated torque. The units for torque slope are per thousand of the motor's
rated torque per second.
Profile torque moves are controlled by the object CurrentLoopSettings (p. 27).
The profile torque mode cannot be used with a stepper motor.

AMPMODE_SERVO_CAN_HOMING =
7686

A true CANopen position mode. Used to home the motor (find the motor zero
position) under CANopen control. Conforms to DSP-402 homing mode.

AMPMODE_SERVO_CAN_PVT = 7687 A true CANopen position mode. In this mode the CANopen master calculates the
motor trajectory and streams it over the CANopen network as a set of points that
the amplifier interpolates between. This mode conforms to the CANopen device
profile for motion control (DSP-402) interpolated position mode.

AMPMODE_STEPPER_CAN_PROFILE
10241

Same as AMPMODE_SERVO_CAN_PROFILE, but used with stepper capable
amplifiers.

AMPMODE_STEPPER_CAN_VELOCITY
10243

Same as AMPMODE_SERVO_CAN_ VELOCITY, but used with stepper capable
amplifiers.

AMPMODE_STEPPER_CAN_HOMING =
10246

Same as AMPMODE_SERVO_CAN_ HOMING, but used with stepper capable
amplifiers.

AMPMODE_STEPPER_CAN_PVT = 10247 Same as AMPMODE_SERVO_CAN_PVT, but used with stepper capable amplifiers.

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide B: Amplifier and Related Objects

Copley Controls Corp. 51

…Other Methods and Properties, continued
Property HighVoltage As Integer
 Read-only. Gets the high voltage bus voltage. Units: 0.1 V.
Property RefVoltage As Integer
Read-only. Gets the analog reference input voltage. Units: mV.
Method SDO_Dnld(index As Integer, sub As Integer, variantData As VARIANT)
Downloads data to the amplifier via a CAN SDO transfer.
Parameters:
index: Index of a CANopen dictionary object.
sub: Sub-index of a CANopen dictionary object.
variantData: The data that is to be transferred. This data can be one of four types: 8-bit, 16-bit, 32-bit, or String.
Method SDO_Upld(index As Integer, sub As Integer, variantData As VARIANT)
Uploads data from the amplifier via a CAN SDO transfer.
Parameters:
index: Index of a CANopen dictionary object.
sub: Sub-index of a CANopen dictionary object.
variantData: The data that is to be transferred. This data can be one of four types: 8-bit, 16-bit, 32-bit, or String.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

B: Amplifier and Related Objects CMO Programmer’s Guide

52 Copley Controls Corp.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 53

APPENDIX
C: THE LINKAGE OBJECT

This appendix describes Copley Motion Objects linkage methods, organized by function.
Note: Unless otherwise stated, all properties described in this appendix have read/write access.
All methods return an HRESULT. In the event of an error, CMO reports the error in the form of
COM-compatible error objects. See Error Handling (p. 15).

C.1: Linkage Object (LinkageObj)
The Linkage Object allows the programmer to “link” a group of amplifiers to perform coordinated
motion. A move using the Linkage Object will start moving all the linked amplifiers at the same time
and end the move at the same time.

C.1.1: Linkage Object Methods
All of the methods described in this appendix are members of CMLCOMLib.LinkageObj.
Method Initialize(ampArray As Variant)
Parameters:
ampArray: Array of one or more AmpObj (which have already been initialized).
Method MoveTo(positionArray As Variant)
Performs a multi-axis move to the positions specified by an array containing one position per axis.
Parameters:
positionArray: Contains the target positions for each axis. Type Double.
Method ReadMoveLimits(vel As Double, acc As Double, dec As Double, jrk As Double)
Reads the limits for a multi-axis move.
Parameters:
vel: Move constant velocity. User-defined units/second; see Units (p. 15).
acc: Move acceleration rate. User-defined units/second2; see Units (p. 15).
dec: Move deceleration rate. User-defined units/second2; see Units (p. 15).
jrk: Maximum jerk (maximum rate of change of acceleration). User-defined units/second3; see Units (p. 15).
Method SetMoveLimits(vel As Double, acc As Double, dec As Double, jrk As Double)
Sets the limits for the multi-axis move.
Note: All parameters must be set to a non-zero value.
Parameters:
vel: Move constant velocity. User-defined units/second; see Units (p. 15).
acc: Move acceleration rate. User-defined units/second2; see Units (p. 15).
dec: Move deceleration rate. User-defined units/second2; see Units (p. 15).
jrk: Maximum jerk (maximum rate of change of acceleration). User-defined units/second3;

see Units (p. 15).

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

C: The Linkage Object CMO Programmer’s Guide

54 Copley Controls Corp.

…Linkage Object Methods, continued
Method TrajectoryInitialize(positions, velocities, times, lowWater As Long)
Initializes and starts a PVT (Position-Velocity-Time) trajectory move on a Linkage Object (coordinated set of axes). The
amplifier will queue up the PVT segments and find the best-fit curve for each set of three PVT segments.
Parameters:
Positions A two dimensional array declared as numOfSegments, numOfAxis.
Velocities A two dimensional array declared as numOfSegments, numOfAxis.
Times A single dimensional array of delta time values representing times from 1 to 255 milliseconds. A time

value of zero indicates to the amplifier that the trajectory is complete. The length of this array, as of the
position and velocity arrays, must be equal to the number of segments.

lowWater This is the level of PVT segments left in the Copley Motion Object buffer on the PC at which CMO
generates an event requesting more PVT segments. This number must be less than the number of
segments.

Method TrajectoryAdd(positions, velocities, times, lowWater As Long)
This method adds PVT segments to the CMO PVT buffer waiting to be sent to the amplifier. (Note: this buffer is used in
addition to the 32-deep PVT buffer on the amplifier.) This method is typically used within the handler for the
TrajectoryEventNotify event handler such that new PVT segments can be sent to the amplifier when the CMO PVT
trajectory generator reaches the lowWater level.
Parameters:
Positions A two dimensional array declared as numOfSegments, numOfAxis.
Velocities A two dimensional array declared as numOfSegments, numOfAxis.
Times A single dimensional array of delta time values representing times from 1 to 255 milliseconds. A time

value of zero indicates to the amplifier that the trajectory is complete. The length of this array, as of the
position and velocity arrays, must be equal to the number of segments.

lowWater This is the level of PVT segments left in the Copley Motion Object buffer on the PC at which CMO
generates an event requesting more PVT segments. This number must be less than the number of
segments.

Method WaitMoveDone(timeout As Long)
Wait until the multi axis move is complete. This method is blocking. When called, it will not return until either the event
occurs, or the timeout expires. If a timeout occurs, CMO will report the timeout in the form of a COM-compatible error
object. Units: milliseconds.
Method HaltMove()
Halt the current move. The exact type of halt can be programmed individually for each axis using the AmpObj property
HaltMode (p. 43).
Method CreateEvent (mask As CML_LINK_EVENT, condition As CML_EVENT_CONDITION) As
EventObj
Creates an instance of the EventObj (see D: The Event Object, p. 57) that monitors amplifier events and sets them up
using the specified parameters.
Parameters:
mask: A bit-mapped value that indicates which events are to be monitored. See C.1.3: CML_LINK_EVENT

Values (p. 55).
condition: The trigger condition for the events that will result in the event callback method being called (e.g. all

events in the mask). See Event Conditions (p. 58).
eventObject: The EventObj instance created by this method.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide C: The Linkage Object

Copley Controls Corp. 55

 C.1.3: CML_LINK_EVENT Values
The CreateEvent method can monitor conditions chosen from the list below.
Value Bit Description
LINKEVENT_MOVEDONE = 1 0 Set when all amplifiers attached to this linkage have finished

their moves and have settled in to position at the end of the
move. Cleared when a new move is started on any amplifier.

LINKEVENT_TRJDONE = 2 1 Set when all amplifiers attached to the linkage have finished
their moves, but have not yet settled into position at the end
of the move. Cleared when a new move is started on any
amplifier.

LINKEVENT_NODEGUARD = 4 2 A node guarding (or heartbeat) error has occurred. This
indicates that one of the amplifiers failed to respond within
the expected amount of time for either a heartbeat or node-
guarding message.

LINKEVENT_FAULT = 16 4 A latching fault has occurred on one of the amplifiers
attached to this linkage.

LINKEVENT_ERROR = 32 5 A non-latching error has occurred on one of the amplifiers.
LINKEVENT_POSWARN = 64 6 One of the amplifiers is reporting a position-warning event.
LINKEVENT_POSWIN = 128 7 One of the amplifiers is reporting a position window event.
LINKEVENT_VELWIN = 256 8 One of the amplifiers is reporting a velocity window event.
LINKEVENT_DISABLED = 512 9 One of the amplifiers is currently disabled.
LINKEVENT_POSLIM = 1024 10 The positive limit switch of one or more amplifier is currently

active.
LINKEVENT_NEGLIM = 2048 11 The negative limit switch of one or more amplifier is currently

active.
LINKEVENT_SOFTLIM_POS = 4096 12 The positive software limit of one or more amplifier is

currently active.
LINKEVENT_SOFTLIM_NEG = 8192 13 The negative software limit of one or more amplifier is

currently active.
LINKEVENT_QUICKSTOP = 16384 14 One of the linkage amplifiers is presently performing a quick

stop sequence or is holding in quick stop mode. The
amplifier must be disabled to clear this.

LINKEVENT_ABORT= 32768 15 One or more amplifier aborted the last profile without
finishing.

LINKEVENT_LOWWATER = 2147483648 31 The active PVT profile is at or below the low water mark and
needs more data points.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

C: The Linkage Object CMO Programmer’s Guide

56 Copley Controls Corp.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 57

APPENDIX
D: THE EVENT OBJECT

This appendix describes the use of the Event Object.
Note: All methods return an HRESULT. In the event of an error, CMO reports the error in the form
of COM-compatible error objects. See Error Handling (p. 15).
Contents include:

D.1: Event Object .. 58
D.1.1: Overview... 58
D.1.2: Event Object Methods .. 58
D.1.3: Callback Method... 58
D.1.4: Event Conditions .. 58

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

E: The I/O Object CMO Programmer’s Guide

58 Copley Controls Corp.

D.1: Event Object
D.1.1: Overview
The EventObj allows an application program to be event-driven by having a procedure called when
an event occurs in the amplifier. This allows the application program to continue execution while
waiting for an event to occur. That is, the program is not blocked. For example, EventObj could call
a procedure when a move is done, to perform some action such as performing the next move. The
Event Object can be set up to perform a callback on a one-time basis or repeatedly. The EventObj
is used in conjunction with the CMO objects that support events: AmpObj, LinkageObj, and IOObj.
The CreateEvent method associated with each these three objects sets up the event monitor and
returns an instance of the EventObj. See the following descriptions:
CreateEvent Method for: See:

AmpObj CreateEvent (p. 45)

LinkageObj CreateEvent (p. 54)

IOObj CreateEvent (p. 60)

D.1.2: Event Object Methods
All of the Methods described here are members of CMLCOMLib.EventObj.
Method Start (repeats As Boolean, timeout As Long)
Starts the event monitor. Parameters:
repeats: Set to true to set up the event monitor to perform a callback each time the event occurs until the event

monitor is stopped. Set to false to set up the event monitor to perform a callback on a one-time basis.
When set up for repeating events, the event condition must go away, then come back for the event
callback to occur again.

timeout: The timeout for the wait. If <0, then wait indefinitely. Units: milliseconds. If the timeout expires before the
event occurs, then the callback routine will be called with its second parameter (hasError) set to true.

Method Stop()
Stops the event monitor.
Method Wait(timeout As Long)
Wait on the event. This method is blocking. When called, it will not return until either the event occurs, or the timeout
expires. If a timeout occurs, CMO will report the timeout in the form of a COM compatible error object. Parameters:
timeout: The timeout for the wait. If <0, then wait indefinitely. Units: milliseconds.

D.1.3: Callback Method
EventNotify is a member of CMLCOMLib.EventObj.
Event EventNotify(match As CML_AMP_EVENT, timeout As Boolean)
Returns the contents of the register that was set up to trigger the event. The timeout variable will be true if the timeout
period expired.
Parameters:
match: The contents of the register that was set up to trigger the event.
timeout: True if a timeout or error occurred, False otherwise. Should be checked for an error condition before

processing the event handling code.

D.1.4: Event Conditions
Each of the following is a member of CMLCOMLib.CML_EVENT_CONDITION. Used to select the
event triggering condition.
Const CML_EVENT_ANY = 1
Any event occurring.
Const CML_EVENT_ALL = 2
All the events are required.
Const CML_EVENT_NONE = 3
None of the events.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide E: The I/O Object

Copley Controls Corp. 59

APPENDIX
E: THE I/O OBJECT

This appendix describes IOObj2, used to access I/O devices that comply to the CiA profile DS-
401: CANopen Device Profile for Generic I/O Modules.
Note: Unless otherwise stated, all properties described in this appendix have read/write access.
All methods return an HRESULT. In the event of an error, CMO reports the error in the form of
COM-compatible error objects. See Error Handling (p. 15).
Contents include:

E.1: I/O Modules.. 60
E.1.1: General IOObj Methods and Properties ... 60
E.1.2: IOObj Methods and Properties for Analog Inputs... 61
E.1.3: IOObj Methods and Properties for Analog Outputs.. 62
E.1.4: IOObj Methods and Properties for Digital Inputs .. 63
E.1.5: IOObj Methods and Properties for Digital Outputs ... 64
E.1.6: IOSettingsObj ... 64

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

E: The I/O Object CMO Programmer’s Guide

60 Copley Controls Corp.

E.1: I/O Modules
The functions described here support I/O devices that comply to the CiA profile DS-401: CANopen
Device Profile for Generic I/O Modules.

E.1.1: General IOObj Methods and Properties
The methods and properties described below are members of CMLCOMLib.IOObj.
Method Initialize (canOpenObj As ICANopenObj, nodeId As Integer)
Initializes the I/O device with the CANOpenObj and the specified node ID.
Parameters:
canOpenObj: An instance of a CanOpenObj that has already been initialized.
nodeid: The node ID of the I/O module.
Method InitializeExt (canOpenObj As ICANopenObj, nodeId As Integer, IOSettingsObj As
CMLCOMLib.IOSettings)
Initializes the I/O device with the CANOpenObj and the specified node ID. Also, through the IOsettingsObj parameter,
allows the CAN network settings for an I/O module to be set at initialization time. This is necessary if PDO mapping is to
be turned off for a particular I/O module.
Parameters:
canOpenObj: An instance of a CanOpenObj that has already been initialized.
nodeid: The node ID of the I/O module.
IOsettingsObj: Allows the CAN network settings for an I/O module to be set at initialization time.
 See E.1.6: IOSettingsObj (p. 64).
Method CreateEvent (mask As CML_IOMODULE_EVENTS, condition As CML_EVENT_CONDITION,
eventObject As EventObj)
Creates an instance of the EventObj (see The Event Object, p. 57) that monitors I/0 events and sets them up using the
specified parameters.
Parameters:
mask: A bit-mapped value that indicates which events are to be monitored.
condition: Trigger condition for the events that will result in the callback method being called (e.g. all events in the

mask). See Event Conditions (p. 58).
eventObject: The EventObj instance created by this method.
CML_IOMODULE_EVENTS Module Events
Each of the following is a member of CMLCOMLib.CML_IOmodule_Events. Used to select the IO events trigger state.

Value (Const) Description
IOEVENT_AIN_PDO0 = 65536 Trigger when any of the first 4 analog inputs generates an event.
IOEVENT_AIN_PDO1 = 131072 Trigger when any of the second 4 analog inputs generates an event.
IOEVENT_AIN_PDO2 = 262144 Trigger when any of the third 4 analog inputs generates an event.
IOEVENT_DIN_PDO0 = 1 Trigger when first 64 digital inputs change state.

Method SDO_Dnld(index As Integer, sub As Integer, variantData As VARIANT)
Downloads data to the IO module via a CAN SDO transfer.
Parameters:
index: Index of a CANopen dictionary object.
sub: Sub-index of a CANopen dictionary object.
variantData: The data that is to be transferred. This data can be one of four types: 8-bit, 16-bit, 32-bit, or String.
Method SDO_Upld(index As Integer, sub As Integer, variantData As VARIANT)
Uploads data from the IO module via a CAN SDO transfer.
Parameters:
index: Index of a CANopen dictionary object.
sub: Sub-index of a CANopen dictionary object.
variantData: The data that is to be transferred. This data can be one of four types: 8-bit, 16-bit, 32-bit, or String.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide E: The I/O Object

Copley Controls Corp. 61

E.1.2: IOObj Methods and Properties for Analog Inputs
The methods and properties described below, members of CMLCOMLib.IOObj, relate to analog
inputs.
Method Ain16Read(channel As Integer, value As Integer, viaSDO As Boolean)
Reads a 16-bit analog input. Parameters:
channel: The analog input channel ID.
value: The analog input value read.
viaSDO: If True, read inputs using SDO transfer. If False (default), use most recently received PDO data, if this

input is mapped to a transmit PDO and the PDO is active.
Property AinIntEnable As Boolean
Current setting of the global interrupt enable for analog inputs.
Method AinTrigTypeRead(channel As Integer, trigger As CML_IO_AIN_TRIG_TYPE) /
Method AinTrigTypeWrite(channel As Integer, trigger As CML_IO_AIN_TRIG_TYPE)
Reads/writes the analog input trigger type associated with input channel. Use this command to set/get the type of event
associated with an analog input. Parameters:
channel: The analog input channel ID.
trigger: The analog input trigger type associated with input channel.
Module Analog Input Trigger Types (CML_IO_AIN_TRIG_TYPE)
Each of the following is a member of CMLCOMLib.CML_IO_AIN_Trig_Type. Each represents an IO trigger type.

Value (Const) Description
IOAINTRIG_UPPER_LIM = 1 Input above upper limit
IOAINTRIG_LOWER_LIM = 2 Input below lower limit
IOAINTRIG_UDELTA = 4 Input changed by more then the unsigned delta amount
IOAINTRIG_NDELTA = 8 Input reduced by more then the negative delta amount

IOAINTRIG_PDELTA = 16 Input increased by more then the positive delta

Method Ain16LowerLimitRead (channel As Integer, limit As Integer) /
Method Ain16LowerLimitWrite (channel As Integer, limit As Integer)
Reads/writes the analog input lower limit value as a 16-bit integer. The lower limit defines the value at which an interrupt
will be generated if it is enabled. Parameters:
channel: The analog input channel ID.
limit: The analog input lower limit value
Method Ain16NegativeDeltaRead(channel As Integer, delta As Integer) /
Method Ain16NegativeDeltaWrite(channel As Integer, delta As Integer)
Reads/writes the analog input negative delta value as a 16-bit integer. The negative delta defines the amount of change
at which an interrupt will be generated if it is enabled. Parameters:
channel: The analog input channel ID.
delta The analog input negative delta value
Method Ain16PositiveDeltaRead(channel As Integer, delta As Integer) /
Method Ain16PositiveDeltaWrite(channel As Integer, delta As Integer)
Reads/writes the analog input positive delta value as a 16-bit integer. The positive delta defines the amount of change at
which an interrupt will be generated if it is enabled. Parameters:
channel: The analog input channel ID.
delta The analog input positive delta value

Continued…

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

E: The I/O Object CMO Programmer’s Guide

62 Copley Controls Corp.

…IOObj Methods and Properties for Analog Inputs, continued
Method Ain16UnsignedDeltaRead(channel As Integer, delta As Integer) /
Method Ain16UnsignedDeltaWrite(channel As Integer, delta As Integer)
Reads/writes the analog input unsigned delta value as a 16-bit integer. The unsigned delta defines the amount of change
at which an interrupt will be generated if it is enabled. Parameters:
channel: The analog input channel ID.
Delta The analog input unsigned delta value
Method Ain16UpperLimitRead(channel As Integer, limit As Integer) /
Method Ain16UpperLimitWrite(channel As Integer, limit As Integer)
Reads/writes the analog input upper limit value as a 16-bit integer. The upper limit defines the value at which an interrupt
will be generated if it is enabled. Parameters:
channel: The analog input channel ID.
Limit: The analog input upper limit value.

E.1.3: IOObj Methods and Properties for Analog Outputs
The methods and properties described below, members of CMLCOMLib.IOObj, relate to analog
outputs.
Method Aout16Write(channel As Integer, value As Integer, viaSDO As Boolean)
Writes to a 16-bit analog output. Parameters:
channel: The analog input channel ID.
value: The value to write.
viaSDO: If true, the outputs will be written using SDO messages. If false (default), then a PDO will be used if

possible.
Method AoutErrModeRead(channel As Integer, mode As Boolean) /
Method AoutErrModeWrite(channel As Integer, mode As Boolean)
Reads/writes the analog output error mode. If the error mode is True, then the analog output will change its value to the
programmed error value in the case of a device failure. If False, a device failure will not cause a change in the analog
output value. Parameters:
channel: The analog output channel ID.
mode: The analog output error mode.
Method Aout16ErrorValueRead(channel As Integer, error As Integer) /
Method Aout16ErrorValueWrite(channel As Integer, error As Integer)
Reads/writes the analog out error value. Parameters:
channel: The analog input channel ID.
error: The analog output error value.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

CMO Programmer’s Guide E: The I/O Object

Copley Controls Corp. 63

E.1.4: IOObj Methods and Properties for Digital Inputs
The methods and properties described below, members of CMLCOMLib.IOObj, relate to digital
inputs.
Method Din8Read(group As Integer, value As Integer, viaSDO As Boolean)
Reads a group of 8 digital inputs.
Parameters:
group: Identifies which group of 8 to read.
value: The value of the input
viaSDO: If true, read inputs using the SDO transfer. If false (default) use the most recently received PDO data if

this input group is mapped to a transmit PDO and the PDO is active .
Property DinIntEnable As Boolean
Current setting of the global interrupt enable of digital inputs.
Method Din8MaskAnyRead(group As Integer, mask As Integer) /
Method Din8MaskAnyWrite(group As Integer, mask As Integer)
Reads/writes the ‘any transition’ interrupt mask setting for a group of 8 digital inputs. For each input in the group, a value
of 1 enables interrupts on any change, and a value of 0 disables the interrupt.
Parameters:
group: Identifies which group of 8 inputs to read/write.
mask: The ‘any transition’ interrupt mask.
Method Din8MaskHigh2LowRead(group As Integer, mask As Integer) /
Method Din8MaskHigh2LowWrite(group As Integer, mask As Integer)
Reads/writes the ‘high to low’ interrupt mask setting for a group of 8 digital inputs. For each input in the group, a value
of 1 enables interrupts on a high to low transition, and a value of 0 disables the interrupt.
Parameters:
group: Identifies which group of 8 inputs to read/write.
mask: The ‘high to low’ interrupt mask.
Method Din8MaskLow2HighRead(group As Integer, mask As Integer) /
Method Din8MaskLow2HighWrite(group As Integer, mask As Integer)
Reads/writes the ‘low to high’ interrupt mask setting for a group of 8 digital inputs. For each input in the group, a value of
1 enables interrupts on a low to high transition, and a value of 0 disables the interrupt.
Parameters:
group: Identifies which group of 8 inputs to read/write.
mask The ‘low to high’ interrupt mask.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

E: The I/O Object CMO Programmer’s Guide

64 Copley Controls Corp.

E.1.5: IOObj Methods and Properties for Digital Outputs
The methods and properties described below, members of CMLCOMLib.IOObj, relate to digital
outputs.
Method Dout8Write(group As Integer, value As Integer, viaSDO As Boolean)
Writes a group of 8 digital outputs.
Parameters:
group: Identifies which group of outputs to write.
value: Value to write to group
viaSDO: If true, outputs are written using SDO message. If false (default), a PDO is used if possible.
Method Dout8ErrModeRead(group As Integer, mode As Integer) /
Method Dout8ErrModeWrite(group As Integer, mode As Integer)
Reads/writes the current error mode setting of a group of 8 digital outputs. For each output in the group, a value of 1 will
cause the output to take its programmed error value on a device failure. Setting the mode to 0 will cause the output to
hold its programmed value on failure.
Parameters:
group: Identifies the group of outputs to read/write.
mode: The current error mode setting of a group of 8 digital outputs.
Method Dout8ErrValueRead (group As Integer, error As Integer) /
Method Dout8ErrValueWrite(group As Integer, error As Integer)
Reads/writes the current error value setting for a group of 8 digital outputs. Error values define the state of the output if a
device failure occurs. The error value will only be set for those output pins that have an error mode set to 1. Those with
error mode set to zero will not be changed by a device failure.
Parameters:
group: Identifies the group of outputs to read/write.
mode: The current error value setting for a group of 8 digital outputs.

E.1.6: IOSettingsObj
The following IO parameters are members of CMLCOMLib. IOSettingsObj. An instance of this
object is obtained from the IOObj.
Property useStandardDinPDO
Use the standard digital input PDO object (default = true).
Property UseStandardDoutPDO
Use the standard digital output PDO object (default = true)
Property UseStandardAinPDO
Use the standard analog input PDO object (default = true).
Property UseStandardAoutPDO
Use the standard analog output PDO object (default = true).
heartBeatPeriod
Configures the heartbeat period used by this IO module to transmit its heartbeat message. If this property is set to zero,
then the heartbeat protocol is disabled on this module. Units: milliseconds. Default: 0.
heartbeatTimeout
Additional time to wait before generating a heartbeat error. Units: milliseconds. Default: 0.
guardTime
This object gives the time between node-guarding requests that are sent from the network master to this IO module. The
IO module will respond to each request with a node-guarding message indicating the internal state of the IO module.
Units: milliseconds. Default: 0.
If the IO module has not received a node-guarding request within the time period defined by the product of the guard
time and the lifeFactor, the IO module will treat this lack of communication as a fault condition.
lifeFactor
This property gives a multiple of the guardTime parameter. The IO module expects to receive a node-guarding request
within the time period defined by the product of the guard time and the lifetime factor. If the IO module has not received a
node-guarding request within this time period, it treats this condition as a fault. Default = 3.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 65

APPENDIX
F: COPLEYMOTIONLIBRARY OBJECT

This appendix describes CopleyMotionLibraryObj, which includes the ability to log communication
traffic for debugging purposes.
Contents include:

F.1: CopleyMotionLibraryObj .. 66
F.1.1: CopleyMotionLibraryObj ... 66

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

F: CopleyMotionLibrary Object CMO Programmer’s Guide

66 Copley Controls Corp.

F.1: CopleyMotionLibraryObj
F.1.1: CopleyMotionLibraryObj
All the methods and properties described below are members of
CMLCOMLib.CopleyMotionLibraryObj.
Property VersionString As String
The version number of the Copley Motion Libraries used by CMO.
Property DebugLevel As Long
Debug message level. Setting this property greater than zero results in debug messages being written to a log file as
specified by the LogFileName property below. If the level was previously set higher than 0, and is then set to 0, any open
log file will be closed. The default log level is 0 (no messages).
Property MaxLogSize As Long
Maximum Copley Motion Libraries log file size. Once the log file exceeds MaxLogSize, it is renamed logfilename.bak
(where logfilename is replaced by the log file name), and a new log file is started. Old backup log files are overwritten.
The default maximum log size is 1,000,000 bytes.
Property LogFileName As String
Name of the Copley Motion Libraries debug message log file. This file is used to log debug messages. The file will be
created (or truncated if it already exists) when the first message is written to the file. Note that the debug level must be
set > 0 for any messages to be written.
Note: For C and C++ users, two special file names are also supported. "stdout" causes the messages to be written to the
C standard output stream, and "stderr" causes them to be written to C standard error stream. The default log file name is
"cml.log"

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 67

APPENDIX
G: MASKING

G.1: Masking
G.1.1: Selecting Bits in a Register
A register mask describes a selection of bits in a register. Copley Motion Objects uses masks to:
1 Configure methods to monitor the states of selected register bits.
2 Directly read or write the states of register bits.
A register mask describes a set of bits. The mask is typically represented by a binary number. For
convenience, the register descriptions in this manual provide the decimal mask values for each bit.
The decimal equivalent can be calculated as 2 n, where n = the bit number
For instance, here is a partial description of the amplifier’s event status register:
Bit Definition Decimal Equivalent of Mask Value
0 Amplifier short circuit. 1 (=2 0)
1 Amplifier over temperature. 2 (=2 1)
2 Amplifier over voltage. 4 (=2 2)
3 Amplifier under voltage. 8 (=2 3)
For a full description, see B.11.2: Amplifier Event Status Register Values (p. 32).

A mask is defined by setting (to value 1) the mask bits that correspond to selected register bits. A
simple way to do this is add the decimal equivalents of the mask values of the selected bits. Here
are three sample masks for the event status register:
 Register Bits
Bit Number 3 2 1 0
Definition Under

Voltage
Over

Voltage
Over

Temperature
Short
Circuit

Decimal Equivalent 8 4 2 1

Note: Add the decimal
equivalents of the selected

bits to determine the
mask's decimal value.

Example Masks Mask Bits Decimal Equivalent
Short Circuit Only 0 0 0 1 1
Over Temperature Only 0 0 1 0 2
Over Voltage Only 0 1 0 0 4
Under Voltage Only 1 0 0 0 8
Under or Over Voltage 1 1 0 0 12 (=8+4)

Continue to G.1.2: Mask Usage Examples (p. 68).

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

G: Masking CMO Programmer’s Guide

68 Copley Controls Corp.

G.1.2: Mask Usage Examples
For instance, the method WriteOutputConfigExt (p. 37) can configure an output to track one or
more bits in the amplifier’s event status word.

Example 1: Configure OUT1 to Track Short Circuit Conditions
The general format of WriteOutputConfigExt is:

WriteOutputConfigExt(pin As Integer, config As
CML_OUTPUT_PIN_CONFIG, param1 As Integer, Param2 As
Integer)

To configure OUT1 to track short circuit conditions, call the method as follows:
WriteOutputConfig 0, OUTPUT_CONFIGURATION_EVENT_STATUS_HIGH,
1, 0

The parameter values are described below.
Parameter Value Meaning
pin 0 Assign the configuration to OUT1.
config OUTPUT_CONFIGURATION_EVENT_STATUS_HIGH The output pin follows the mask of the

amplifier's event status register and is
active high.

param1 1 Track register Bit 0, Amplifier short circuit.
param2 0 This parameter is ignored for this

configuration.

Example 2: Configure OUT4 to Track Over Temperature and Over Voltage Conditions
In this example, the mask is a sum of two values:
WriteOutputConfigExt 3,OUTPUT_CONFIGURATION_EVENT_STATUS_HIGH, 12, 0

The parameter values are described below.
Parameter Value Meaning
pin 3 Assign the configuration to OUT4.
config OUTPUT_CONFIGURATION_EVENT_STATUS_HIGH The output pin follows the mask of the

amplifier's event status register and is
active high.

param1 12 Track register bits 3, Amplifier under
voltage, and 2, Amplifier over voltage. Note
that the selection is a bitwise “Or.” OUT4
will go active if an under or over voltage
condition occurs.

param2 0 This parameter is ignored for this
configuration.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Controls Corp. 69

APPENDIX
H: OBJECT REVISION HISTORY

H.1: Object Revision History
All legacy objects continue to function in subsequent releases of the software. All new versions of
objects provide the functions of previous versions, plus the additions noted.
Object Description Object Revisions Changes
Amplifier Object AmpObj6

AmpObj5
Updates.

AmpObj4 Added WriteOutputConfigExt method. Supercedes
WriteOutputConfig.
Added ReadOutputConfigExt method. Supercedes
ReadOutputConfig.
Expanded list of output pin configuration values to include
position triggered and trajectory status functions.

AmpObj3 Added methods and properties to support trace
functionality.

AmpObj2 Added AmpModeWrite property to allow changing of
amplifier mode.
Added a new mode to support profile torque mode
operation.
Added four new properties to support profile torque mode
operation.

AmpObj Original.
Position Loop Settings Object PositionLoopSettings2 Added PosLoopScale property.

PositionLoopSettings Original.
Motor Info Object MotorInfoObj2 Added properties: resolverCycles and hallvelocityShift.

MotorInfoObj Original.
I/O Object IOObj2 Added InitializeExt method.

IOObj Original.

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

Copley Motion Objects (CMO) Programmer’s Guide
P/N 95-00290-000

Revision 4
June 2008

 2004-2008
Copley Controls Corporation

20 Dan Road
Canton, MA 02021 USA

All rights reserved

The
 IC

R Smart
Actu

ato
r w

hic
h u

se
s t

his
 so

ftw
are

 is
 a

DISCONTIN
UED Tolo

mati
c P

rod
uc

t.

This
 m

an
ua

l is
 m

ad
e a

va
ila

ble
 fo

r u
se

 w
ith

 le
ga

cy
 IC

R.

	Product Warnings
	About This Manual
	Overview and Scope
	Related Documentation
	Comments
	Copyrights
	Document Validity
	Revision History

	1: Introduction
	1.1: Windows-Based Control of Copley Amplifiers
	1.1.1: Simplified Access to CANopen Functions
	1.1.2: Architectural Overview

	1.2: Basic System Requirements
	1.2.1: Computer and Operating System
	1.2.2: Software
	1.2.3: CAN Interface Card
	1.2.4: Amplifier Firmware

	2: Installation
	2.1: Installation Overview
	2.2: Installation Procedures
	2.2.1: Downloading Software from Web (Optional)
	2.2.2: Installing Copley Motion Objects Software

	3: Fundamental Concepts and Procedures
	3.1: Before Running a Copley Motion Objects Program
	3.2: CAN Network
	3.2.1: Addressing and Bit Rate
	3.2.2: CAN Communication and Connection Errors

	3.3: Adding a Reference to a Program
	3.3.1: Adding a Reference to a Program in VB
	3.3.2: Adding a Reference to a Program in LabVIEW:

	3.4: Object Initialization Sequence
	3.4.1: CAN Network, and Amplifier Objects

	3.5: Objects Contained by AmpObj
	3.5.1: Overview
	3.5.2: Creating and Initializing Objects Contained by AmpObj
	3.5.3: Modifying an AmpObj Object

	3.6: Node Guarding
	3.6.1: Node Guarding Overview
	3.6.2: Possibility of False Node Guarding Conditions

	3.7: Error Handling
	3.8: Units
	3.8.1: Default Amplifier Units
	3.8.2: User-Defined Units

	3.9: Stepnet Amplifiers
	3.9.1: Stepper and Servo Modes
	3.9.2: Open Loop Stepper Mode Actual Position and Velocity
	3.9.3: Stepper Mode with Encoder Actual Position and Velocity

	A: CANopen Object
	A.1: CANopen

	B: Amplifier and Related Objects
	B.1: AmpSettingsObj
	B.1.1: Overview
	B.1.2: AmpSettingsObj Methods and Properties

	B.2: Amplifier Initialization
	B.3: Amplifier Information
	B.3.1: Amplifier Information-Related Amplifier Object Properties
	B.3.2 AmpInfoObj

	B.4: Motor/Feedback Information
	B.4.1: Motor/Feedback-Related Amplifier Object Methods and properties
	B.4.2: MotorInfoObj2

	B.5: Save/Restore Amplifier Data
	B.6: Node Guarding
	B.7: Current Loop
	B.7.1: Current Loop-Related Amplifier Object Properties
	B.7.2: CurrentLoopSettings Object

	B.8: Velocity Loop
	B.8.1: Velocity Loop-Related Amplifier Object Properties
	B.8.2: VelocityLoopSettings Object

	B.9: Position Loop
	B.9.1: Position Loop-Related Amplifier Object Properties
	B.9.2: PositionLoopSettings2 Object

	B.10: Tracking Windows
	B.10.1: Tracking Windows - Related Amplifier Object Properties
	B.10.2 TackingWindows Object

	B.11: Status, Events, and Faults
	B.11.1: Amplifier Status Register Methods
	B.11.2: Amplifier Event Status Register Values
	B.11.3: Amplifier Event Register Methods
	B.11.4: Amplifier Event Register Values
	B.11.5: Amplifier Faults Methods and Properties
	B.11.6: Amplifier Fault Values

	B.12: Amplifier Digital Inputs/Outputs
	B.12.1: Input Pin Methods
	B.12.2: Input Pin Configuration Settings
	B.12.3: Output Pin Methods
	B.12.5: Output Pin Configuration Values

	B.13: Amplifier Enable/Disable
	B.14: Homing
	B.14.1: Homing-Related Amplifier Object Methods and Properties
	B.14.2: HomeSettings Object Properties

	B.15: Quick Stop
	B.15.1: Quick Stop
	B.15.2: Halt

	B.16: Point-to-Point Moves
	B.16.1: Point-to-Point Move-Related Amplifier Methods and Properties
	B.16.2: ProfileSettings Object

	B.17: Amplifier Events
	B.18: Amplifier Trace Methods and Properties
	B.18.1: Amplifier Trace Methods
	B.18.2: Amplifier Trace Trigger Values
	B.18.3: Amplifier Trace Channel Variables

	B.19: Other Methods and Properties

	C: The Linkage Object
	C.1: Linkage Object (LinkageObj)
	C.1.1: Linkage Object Methods
	 C.1.3: CML_LINK_EVENT Values

	D: The Event Object
	D.1: Event Object
	D.1.1: Overview
	D.1.2: Event Object Methods
	D.1.3: Callback Method
	D.1.4: Event Conditions

	E: The I/O Object
	E.1: I/O Modules
	E.1.1: General IOObj Methods and Properties
	E.1.2: IOObj Methods and Properties for Analog Inputs
	E.1.3: IOObj Methods and Properties for Analog Outputs
	E.1.4: IOObj Methods and Properties for Digital Inputs
	E.1.5: IOObj Methods and Properties for Digital Outputs
	E.1.6: IOSettingsObj

	F: CopleyMotionLibrary Object
	F.1: CopleyMotionLibraryObj
	F.1.1: CopleyMotionLibraryObj

	G: Masking
	G.1: Masking
	G.1.1: Selecting Bits in a Register
	G.1.2: Mask Usage Examples
	Example 1: Configure OUT1 to Track Short Circuit Conditions
	Example 2: Configure OUT4 to Track Over Temperature and Over Voltage Conditions

	H: Object Revision History
	H.1: Object Revision History

