

PROFINET USER'S GUIDE

ACSI Servo Motor/Drive/Controller

ACSI Motor/Drive/Controllers with Profinet drive are DISCONTINUED Replacements are not available. Use this manual as reference only.

EtherNet/IP, Modbus and Basic ASCI Motor/Drive/Controllers continue with full Tolomatic Support

Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Copyright © 2022 Tolomatic, Inc. All rights Reserved.

All brand and product names are trademarks of their respective owners. Information in this document is believed to be accurate at the time of publication.

Table of Contents

1.1 Introduction	4
1.2 Network	4
1.3 Definitions	5
1.4 OSI Network Layer Structure	6
1.5 Supported Features of PROFINET	7
1.6 Device Names	7
1.7 References	7
2.1 Ethernet Cabling	8
2.2 Tolomatic Motion Interface (TMI) Requirements	8
3.1 Input Modules	9
4.1 Output Modules	13
5.1 Getting Started	16

Figures

e	
Figure 1: PROFINET OSI Network Layer Model	6
Figure 2 - Edge Triggered Commands	14

1.1 Introduction

Device Information Vendor ID: 0x03C3 Vendor Name: Tolomatic, Inc. Device ID: 0x2362 Product Family: ACSI Drive & Controller Main Family: Drives

For use with 36043189_ACSI_GSDML definitions file.

A sample Siemens Program is available for reference. Please contact Tolomatic Support for details.

PROFINET is the standard for industrial networking in automation. It connects devices, systems, and cells, facilitating faster, safer, less costly and higher quality manufacturing. It easily integrates existing systems and equipment while bringing the richness of Ethernet down to the factory floor. PI North America is the independent governing body of PROFINET.

 PI North America was founded as the PROFIBUS Trade Organization in 1994 and was generally known as simply PTO. Although an autonomous non-profit trade organization, PTO renamed itself to PI North America to more closely identify with the international umbrella organization for the Regional PI Associations.

PI North America is dedicated to showing industry the beneficial results of using fieldbuses in general and PROFIBUS and PROFINET in particular while assisting device manufacturers throughout North America in the development and marketing of PROFIBUS and PROFINET products.

Over 1,500 companies organized in 27 Regional PROFIBUS Associations develop and supply fieldbus and Industrial Ethernet solutions for cost efficient and highly reliable automation.

PI North America is part of the global PI community that includes 27 Regional PI Associations (RPAs).

1.2 Network

ACSI PROFINET implementation supports RT 2.33 network configuration (RT Class 1). No additional settings must be set on the drive. Support for IRT (RT Class 3) is currently in development.

Tolomatic User Guide:

ACSI PROFINET implementation currently does not support media redundancy (ring topology).

NOTE: PROFINET networks do not support network hubs or routers. Including these devices in line with the network could result in data corruption, data collisions, and other network issues.

NOTE: Internal testing has shown that unmanaged switches are unreliable in PROFINET topologies. Tolomatic recommends only using managed switches when required.

1.3 Definitions

Connection: A connection is a logic link between two devices that may share more than one connection

GSDML: General Station Description Markup Language. A GSDML is an XML based language used to describe the supported functions and behavior of a PROFINET IO-Device.

Device: A node (drive, motor controller, I/O, sensor, etc.) on a PROFINET network that takes commands from a controller.

Controller: The master devices in command of the PROFINET network and all devices on the network.

Module: Modules are user defined components that plug into slots. Modules can be real or virtual.

RT: Real Time - the Real Time PROFINET IO Channel. I/O and Alarm Data are

transferred over the RT Channel.

IRT: Isochronous Real Time - Provides scheduled, synchronous communication for use with motion control applications

DCP: Discovery Control Protocol – A communications protocol with PROFINET IO that allows an IO controller or Supervisor to find every PROFINET IO device on a subnet.

1.4 OSI Network Layer Structure

Figure 1 below shows the seven layers of protocol implementation. Tolomatic's ACS Drive user device profile resides on the seventh layer.

Application Layer 7	ACS DRIVE						
Presentation Layer 6	NOT USED						
Session Layer 5	NOT	NOT USED					
Transport Layer 5	TCP/UDP	RT PROFINET IRT					
Network Layer 3	IP	Real-Time Channel					
Data Link Layer 2	Standard	Fthernet					
Physical Layer 2							

Figure 1: PROFINET OSI Network Layer Model

Open TCP/IP Channel

- Device parameterization
- Reading of diagnostics data
- Loading of interconnections
- Negotiations of communication channel for user data

• Real-time channel (RT)

- High-performance transmission
- Cyclic data
- Event-controlled signals

• Real-time channel (IRT)

- High-performance transfer
- Data in isochronous mode
- Jitter <1 µsec
- Real-time network switch

1.5 Supported Features of PROFINET

ACSI Supports PROFINET RT 2.33.

1.6 Device Names

The following rules apply for PROFINET V2.3 device names.

- 1. The device name must not be longer than 240 characters. The following characters are permitted:
 - a. Letters "a" to "z"
 - b. Numbers "0" to "9"
 - c. Hyphen or period
- 2. One name component in the device name, a character string between two periods may not be longer than 63 characters.
- 3. The device name may not begin with a hyphen.
- 4. The device name may not begin with the character string "port-xyz" (x,y,z = 0 to 9).
- 5. The device name may not have the form n.n.n.n (n = 0 to 9)

1.7 References <u>http://us.profinet.com/</u>

2.1 Ethernet Cabling

ACSI uses circular M12 D-code 4 pin connectors. Please refer to the hardware manuals for further cable information (Hardware and Installation Guide; ACSI: 3604-4185) See appendix for network cable type and length specification. Table 1 - Cable Wire Type versus Cable Length

The following information regarding cable length is from commercial building telecommunications cabling standard ANSI/TIA/EIA-568-B.1. The maximum length of a cable segment is 100 meters (328 ft). Category 5e cable is capable of transmitting data at speeds up to 1000 Mbps – 1Gbps (ACSI has a maximum speed of 100 Mbps). The specifications for 10BASE-T networking specify a 100-meter length between active devices. This allows for 90 meters of fixed cabling, two connectors, and two patch leads of 5 meters, one at each end.

2.2 Tolomatic Motion Interface (TMI) Requirements

PROFINET Ethernet configuration settings are controlled by the Controller setup using the engineering tool. There are no Ethernet configuration settings established by Tolomatic Motion Interface (TMI). Application motor tuning, home settings, and other safety limits should be set in TMI before operation.

3.1 Input Modules

The following are the input modules, as defined by the GSDML file for use with the ACSI Integrated Drive & Controller.

Input Modules							
Direction (Perspective of PLC)	Fixed in Slot	Туре	Description	Units	Module Ident	SubModule Ident	
Input	1	Float32	Current Position	urrent (linear mm, osition rotary defined by TMI)		0x10440001	
	2	Integer32	Drive Status	bitmask (defined below)	0x10500000	0x10550001	
	3	Integer32	bitmask Drive Faults (defined below)		0x10600000	0x10660001	
	4 Integer32		Digital Inputs	bitmask (first 4 bits represent 4 inputs)	0x10700000	0x10770001	
	5	Integer32	Digital Outputs	bitmask (first 2 bits represent 2 outputs)	0x10800000	0x10880001	
	6	Float32	Analog Input (Remappable Register 1*)	v or mA (as defined by TMI)	0x10900000	0x10990001	
	7	Float32	Analog Output (Remappable Register 1*)	v or mA (as defined by TMI)	0x10A00000	0x10AA0001	

Table 2 - Input Module Definitions

*As of ACSI Firmware Version 1.7

DRIVE STATUS DEFINITION					
BIT	DESCRIPTION				
0	Drive Enable: 0 = Not Enabled; 1 = Enabled				
1	Drive Homed: 0 = Not Homed; 1 = Homed				
2	Drive In Motion: 0 = Not In Motion; 1 = In Motion				
3	Software Stop: 0 = OFF; 1 = ON				
4 - 19	(internal use)				
20	Brake Not Active: (0 = Brake Active)				
21 – 25	(internal use)				
26	Drive In Position: 1 = In Commanded Position				
27 - 30	(internal use)				
31	Drive Control: 0 = off (I/O, CTROFF) 1 = on (Host, CTRON)				

Table 3 - Drive Status Bitmask Definition

DRI	VE FAULTS DEFINITION
BIT	DESCRIPTION
0	Positive Limit
1	Negative Limit
2	Software Stop
3	Position Error
4	Feedback Error
5	Overcurrent
6	Motor Overtemperature
7	Drive Overtemperature
8	Drive OverVoltage
9	Drive UnderVoltage
10	Flash Error
11	I2T Limit
12	Short Circuit
13	Watchdog Reset
14	Velocity Error
15 to 21	Reserved

Table 4 - Drive Faults Bitmask Definition

Tolomatic User Guide:

ACS SERVO DRIVE/ACSI REMAPPABLE REGISTERS

Analog Input (Default Register 1)

Analog Output (Default Register 2)

Actual Position

Actual Position Error

Actual Velocity

Actual Velocity Error

Actual Current

Commanded Position

Commanded Velocity (Trajectory)

I2T Accumulation Value*

I2T Limit*

Bus Voltage

Board Temperature (Drive)

Digital Inputs

Digital Outputs

* When I2T Accumulation value exceeds limit, I2T fault occurs. Accumulation happens any time motor is running

Table 5 – ACS Servo Drive/ACSI Remappable Registers

4.1 Output Modules

The following are output modules, as defined by the GSDML file for use with the ACSI Integrated Drive & Controller.

Output Modules							
Direction (Perspective of PLC)	Slot	Туре	Description	Description Units		SubModule Ident	
	8	Integer8	Drive Command	bitmask (defined below)	0x11400000	0x11440001	
	9	9 Integer8 Move Se		profile index (0 - uses defined target 0 profile, 1-16 uses index profiles defined in TMI)	0x11500000	0x11550001	
	10	Integer16	Reserved	not used	0x11600000	0x11660001	
Output	11 Float32 Target 0 Position		mm or rotary (linear mm, rotary defined by TMI)	0x11700000	0x11770001		
	12	Float32	Target 0 Velocity	mm or rotary (linear mm, rotary defined by TMI)	0x11800000	0x11880001	
	13	Float32	Target 0 Acceleration	mm or rotary (linear mm, rotary defined by TMI)	0x11900000	0x11990001	
	14	Float32	Target 0 Deceleration	mm or rotary (linear mm, rotary defined by TMI)	0x11A00000	0x11AA0001	
	15	Float32	Target 0 Force	%	0x11B00000	0x11BB0001	
	16	Integer32	Target 0 Motion Type	enumeration (defined below)	0x11C00000	0x11CC0001	
	17	Integer32	Digital Outputs	bitmask (first 2 bits represent 2 outputs)	0x11D00000	0x11DD0001	

Table 6 - Output Modules Definitions

DRIVE CON	DRIVE COMMAND DEFINITION						
DESCRIPTION	VALID COMMANDS (BIT COMBINATIONS)						
ENABLE = 1; DISABLE = 0	0 (0x00): Disable						
START MOTION	1 (0x01): Enable/Clear Start Motion						
HOME	3 (0x03): Start Motion						
SOFTWARE STOP	5 (0x05): Home						
STOP MOTION	8 (0x08): Software Stop						
RESERVED	17 (0x11): Stop Motion 21 (0x15): Home Here						

Table 7 - Drive Command Definitions

NOTE:

The drive processes commands issued over the network in an edge-triggered manner. The drive does not process new commands unless they differ from the previous command. For motion, this means the drive will not make a new move until it detects a new "Start Motion" command. To clear the previous Start Motion command, the PLC program must set the command to something other than Start Motion. "Enable" is typically used. This can be done while the drive is in motion, or in a time-based scheme as long as the drive has sufficient time to detect the transition from Start Motion to Enable (>10 ms).

Figure 2 - Edge Triggered Commands

	MOTION TYPES ENUMERATION					
NAME	VALUE	DESCRIPTION				
Absolute	0	Moves to location at profile defined for Target 0				
		using the defined motion profile				
Incremental	1	Moves in the positive direction to the distance specified by				
Positive	-	Target 0 Position using the defined motion profile				
Incremental	2	Moves in the negative direction to the distance specified by				
Negative	2	Target 0 Position using the defined motion profile				
Home	5	Executes a home motion using the homing profile defined in TMI				
No Action	6	Does not execute motion				
Forme	9	Press to Force % specified by motion profile				
Force		(See TMI manual for complete description)				
Incremental		Moves in the positive direction to the distance specified by				
Positive	11	Target 0 Position at the defined motion profile. If position is commanded				
Rotary		past max distance, the current position is reset, and the unit is un-homed				
Incremental		Moves in the negative direction to the distance specified by				
Negative	12	Target 0 Position at the defined motion profile. If position is commanded				
Rotary		past max distance, the current position is reset, and the unit is un-homed				
Velocity	10	Starts a velocity move in the positive direction				
Forward	13	at profile velocity and acceleration				
Velocity	1/	Starts a velocity move in the negative direction				
Reverse	14	at profile velocity and acceleration				

Table 8 - Motion Types Definitions

PROFINET LED Indicators						
MOD LED	MOD LED System Status		NET LED	System Status		
Off	Startup		Off	Startup		
Blinking Green	Blink Test		Blinking Red	No PLC Connection		
Solid Green Config Complete			Solid Green	PLC Connected		

Table 9 – PROFINET LED Indicators

5.1 Getting Started

NOTE: The following steps define the basic device configuration for PROFINET. Further setup information is specific to the controller vendor. Please see additional Tech Bulletins available on <u>www.Tolomatic.com</u> or contact Tolomatic.

In this example Siemens TIA Portal V14 is used (See <u>3600-4197</u> for further information.), but these steps can be applied to any PROFINET engineering configuration tool.

1. Install the GSDML File. The Tolomatic ACSI – PROFINET GSDML file is available at www.Tolomatic.com.

2. In Network view, drag and drop device from catalog under "Other Field Devices \rightarrow PROFINET IO \rightarrow Drives \rightarrow Tolomatic, Inc. \rightarrow ACSI Drive & Controller \rightarrow ACSI Drive & Controller."

3. Click "not assigned" on the device picture and assign to the controller by selecting the controller name and network name, once connected there should be a dashed green line between controller and the device.

	ACSI_SIMATIC1200_TestProgram > Devices & networks		_ ⊫ ■ ×
	🖉 Topology view	// 🚠 Network view	Device view
toloni 🔍 🦱	Network 🔛 Connections HMI connection	🐮 🖽 🔍 ±	
ACSI Drive & Co Not assigned	SIMATIC1200	toloni	
		SIMATIC1200_A	
	PN/IE_1		
		00%	····· ?···· 1

4. Double click the device to enter device view (or click device view tab and select device with dropdown) and configured the IP address (if needed) and device name (under properties \rightarrow Ethernet addresses) and modules (the modules will automatically be configured in the ACSI device overview).

…Program →	SIMATIC1200_ACSI_Tester [CPU 121	2C DC/DC/	'DC] → Distributed VO → P	ROFINI	ET IO-Sy	/stem (100): PN/IE_	1 → toloni 🛛 🗕 🛚	×
			2	Topol	ogy vie	w 🔥 N	etwork vi	ew 📑 Device vi	iew
de toloni			Device overview		55	1000			
		<u>^</u>	🏆 Module	Rack	Slot	I address	Q addr	Туре	Artic
aloni		=	🔻 toloni	0	0			ACSI Drive & Contr	ACSI
×0.			Internal	0	0 ×1			toloni	
			Current Position_1	0	1	14		Current Position	
			Drive Status_1	0	2	2528		Drive Status	
			Drive Faults_1	0	3	2124		Drive Faults	
			Drive Digital Inputs_1	0	4	1316		Drive Digital Inputs	
	<u> </u>		Drive Digital Output	0	5	1720		Drive Digital Outputs	
			Drive Analog Input_1	0	6	58		Drive Analog Input	
		7	Drive Analog Outpu	0	7	912		Drive Analog Output	
		-	Drive Command_1	0	8		1	Drive Command	
			Drive Move Select_1	0	9		6	Drive Move Select	
		-		0	10				
			Drive Target0 Positi	0	11		2326	Drive Target0 Posit	
			Drive Target0 Veloci	0	12		2730	Drive Target0 Velo	
			Drive Target0 Accel	0	13		710	Drive Target0 Acce	
			Drive Target0 Decel	0	14		1114	Drive Target0 Dece	
			Drive Target0 Force	0	15		1518	Drive Target0 Force	
			Drive Target0 Motio	0	16		1922	Drive Target0 Moti	
			Drive Digital Output	0	17		25	Drive Digital Outputs	
		~							
< 111 >	100%		<						>

5. Please ensure that 'Use IEC V2.2 LLDP Mode' is checked for proper drive/PLC communication.

Advanced options
Interface options
Prioritized startup Use IEC V2.2 LLDP mode
Real time settings

6. Always set IP Address on PLC manually, if necessary. (This can be done automatically, vendor specific tools, or PN browser in PROFINET Commander, TIA to set IP on controller in advance).

7. Set or Download the device names on the PROFINET IO devices with your Engineering Configuration Tool. In TIA highlight PN Network in network view, right click \rightarrow Assign Device Name. Assign each name to the correct device from the list. Once the device names are set, compile the configuration and download to the controller.

Warning: If the device names are not set correctly, the controller will not find the device at startup.

Warning: The following rules apply for PROFINET V2.3 for device names.

- 1. The device name must not be longer than 240 characters. The following characters are permitted:
 - a. Letters "a" to "z"
 - b. Numbers "0" to "9"
 - c. Hyphen or period
- 2. One name component in the device name, a character string between two periods may not be longer than 63 characters.
- 3. The device name may not begin with a hyphen.
- 4. The device name may not begin with the character string "port-xyz" (x,y,z = 0 to 9).
- 5. The device name may not have the form n.n.n.n (n = 0 to 9)

PROFIBUS® and PROFINET® are registered trademarks and patented technology, licensed by PROFIBUS Nutzerorganisation e.V., Germany, www.profibus.com

MADE IN U.S.A.

Tolomatic Inc.

USA - Headquarters

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors

3800 County Road 116 Hamel, MN 55340, USA Phone: (763) 478-8000 Toll-Free: 1-800-328-2174 sales@tolomatic.com www.tolomatic.com

MEXICO

 \bigcirc

Centro de Servicio

Parque Tecnológico Innovación Int. 23, Lateral Estatal 431, Santiago de Querétaro, El Marqués, México, C.P. 76246 **Phone:** +1 (763) 478-8000 help@tolomatic.com

EUROPE Tolomatic Europe GmbH Elisabethenstr. 20 65428 Rüsselsheim Germany Phone: +49 6142 17604-0 help@tolomatic.eu www.tolomatic.com/de-de

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV = ISO 9001 = Certified site: Hamel, MN

CHINA Tolomatic Automation Products (Suzhou) Co. Ltd. No. 60 Chuangye Street, Building 2 Huqiu District, SND Suzhou Jiangsu 215011 - P.R. China Phone: +86 (512) 6750-8506 TolomaticChina@tolomatic.com

that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information

omat

EXCELLENCE IN MOTION

Tolomatic User Guide:

3600-4196_09